Приемники и ретрансляторы YAESU

Yaesu VR-120

Yaesu VR-500

Yaesu VR-5000

Yaesu Fusion DR-1X

 Цены и наличие товара Вы можете уточнить здесь

YAESU VR-120

VR-120

Описание

Сканирующий приемник VR-120 - это новый миниатюрный приемник фирмы Vertex (Yaesu). Дополнительные возможности:

  • счетчик каналов, позволяющий использовать приемник в качестве частотомера. Данная функция позволяет обнаруживать и запоминать частоту самого сильного сигнала в полосе 100 МГц;
  • большее количество каналов памяти (640);
  • возможность присваивания каждому каналу текстового комментария длиной 8 символов.

Характеристики

Технические характеристики
Диапазон частот 100 кГц - 1299.99995 МГц
Модуляция AM, NFM,WFM
Тип схемы Супергетеродин тройного преобразования
Шаг 5, 6.25, 9, 10, 12.5, 15, 20, 25, 30, 50, 100 кГц
Каналов памяти 640 каналов (10 банков по 64)
Сопротивление антенны 50 Ом небалансир., BNC
Чувствительность (мкВ) 
100кГц-5МГц 
5-160 МГц 
160-370 МГц 
370-520 МГц 
520-1300 МГц

АМ 1.5 
AM - 0.6, FM - 0.3, WFM - 0.9 
AM - 0.6, FM - 0.3, WFM - 0.6 
FM - 0.3, WFM - 1.0 
FM - 0.7, WFM - 3.0
Избирательность WFM - 200 кГц/-6дБ 
AM/FM - 16 кГц/-6дБ
Питание 2.2-3.5В, внутренние батареи
Потребление тока 95 мА (режим приема с громкостью 50мВт на 8Ом) 
15 мА (режим Standby, функция хранения включена) 
55 мА (режим Standby, функция хранения выключена)
Рабочие температуры

-10 - +50

Мощность звукового выхода

80 мВт на 8 Ом

Размер

85 x 59x 28 мм

Вес 195 г без батарей и антенны

YAESU VR-500

Yaesu VR-500

Описание

Диапазон приема: 100 кГц - 1300 МГц 
Виды модуляции: CW, AM, USB, LSB, WFM, NFM 
Количество каналов памяти: 1000 
Скорость: сканирования - 12 каналов/сек., поиска - 24 частоты/сек.

  • Цифровой ЖК дисплей
  • Отображение частоты, номера канала памяти, режима поиска/сканирования
  • Индикатор уровня сигнала
  • Спектроскоп

Характеристики

Технические характеристики
Диапазон частот 100 кГц - 1300 МГц 
в версии для США вырезаны полосы 807.1-819.7, 824-849 и 869-894 МГц
Виды модуляции AM, USB, LSB, WFM, NFM
Супергетеродин Тройная конверсия
Шаг подстройки

50, 100 Гц 1, 5, 6.25, 9, 10, 12.5, 15, 20, 25, 30, 50, 100 кГц

Скорость сканирования - 12 каналов/сек., поиска - 24 частоты/сек.
Чувствительность, мкВ 
(AM/SSB/CW - 10dB S/N 
NFM/WFM - 12dB SINAD)
от 100 кГц до 5 МГц AM - 1.5; SSB/CW - 0.6
от 5 MГц до 370 MГц AM -1.0; SSB/CW - 0.5; NFM - 0.5; WFM -1.5
от 370 МГц до 520 МГц SSB/CW - 0.5; NFM -0.5; WFM - 1.8
от 520 МГц до 1.3 ГГц SSB/CW - 0.8; NFM -1.2; WFM - 3.0
Избирательность нет данных
Полосы пропускания нет данных
Антенный выход Разъем BNC, сопротивление 50 Ом
Питание внутреннее - 2.2 ~ 3.5 В DC (2 батареи типа АА) 
внешнее - 9.0 ~ 16.0 В DC (блок питания в комплекте)
Ток потребления 115 мА (на приеме) 
55 мА (ожидание, экономичный режим отключен) 
15 мА (ожидание, экономичный включен)
Параметры звука 90 мВ (при питании от батарей) 
125 мВ (при внешнем питании)
Габариты 95 мм (в) х 58 мм (ш) х 24 мм (г)
Вес 220 г. (с батареями и антенной)

YAESU VR-5000

Yaesu VR-5000

Описание

  • Большой многофункциональный ЖК-дисплей
  • Встроенный таймер
  • Отображение частоты, номера канала памяти, режима поиска/сканирования
  • Индикатор уровня сигнала
  • Спектроанализатор (работает в режиме реального времени)
  • Широкий набор типов и видов сканирования
  • Возможность сканирования сразу двух частот
  • Две ячейки цифровой записи звука по 8с каждая
  • Компьютерный интерфейс управления
  • Встроенный аттенюатор
  • Цифровой шумоподавитель
  • Цифровой фильтр импульсных помех, АПЧ
  • Выход ПЧ 2 антенных разъема
  • Развитые функции использования памяти

Характеристики

Технические характеристики
Диапазон частот 0.1 - 2600 МГц
Шаг сетки частот 0,02-500 кГц
Модуляция AM/FM/WFM/CW/SSB
Скорость сканирования 50 каналов в секунду
Число каналов памяти 2000(100 групп)
Чувствительность (в зависимости от частоты) 1.1…10.8(AM), 0.3...4.8(SSB/CW) 0.35…0.8(NFM), 1.5(WFM) мкВ
Питание 13,5 В
Габариты и масса 180х70х203мм; 1900 г

YAESU Fusion DR-1X

Yaesu Fusion DR-1X

Описание

Знакомство с ретранслятором DR-1X System Fusion

Yaesu Musen рада представить DR-1X, двухдиапазонный (144/430MHz) ретранслятор, который поддерживает обычную аналоговую FM связь, а также одновременно цифровой протокол System Fusion в пределах частотного диапазона 12.5кГц. Мы уверены, что внедрение новейшей DR-1X станет рассветом нашей новой и впечатляющей многофункциональной системы System Fusion. 
System Fusion является интегрированной платформой, которую мы предлагаем в качестве нашего цифрового решения для радиосвязи, она обеспечит четкую и чистую голосовую связь и надежную высокоскоростную передачу данных с использованием цифровой модуляции C4FM, а также позволит пользоваться существенными преимуществами аналоговой FM радиосвязи, такими как низкое потребление батареи и возможность работать на больших расстояниях. 
Одной из ключевых возможностей System Fusion является функция AMS (автоматический выбор режима), которая мгновенно распознает принимается ли сигнал в режиме V/D, режиме голосовой связи или режиме данных FR аналоговом FM или цифровом C4FM, и автоматически переключается на соответствующий. Таким образом, благодаря нашим цифровым трансиверам FT1DR и FTM-400DR System Fusion, чтобы поддерживать связь с аналоговыми FM радиостанциями больше нет необходимости каждый раз вручную переключать режимы,. 
На репитере DR-1X, AMS можно настроить так, чтобы входящий цифровой C4FM сигнал преобразовывался в аналоговый FM и ретранслировался, таким образом позволяя поддерживать связь между цифровым и аналоговым трансиверами. AMS также можно настроить на автоматическую ретрансляцию входящего режима на выход, позволяя цифровым и аналоговым пользователям совместно использовать один ретранслятор. 
До сих пор, FM ретрансляторы использовались только для традиционной FM связи, а цифровые ретрансляторы только для цифровой. Однако, теперь просто заменив обычный аналоговый FM репитер на DR-1X, вы можете продолжать пользоваться обычной FM связью, а также использовать ретранслятор для более продвинутой цифровой радиосвязи System Fusion. Другие периферийные устройства, такие как дуплексер и усилитель и т.д. можно продолжать использоваться как обычно. 
Система управления ретранслятором включает панель выбора частот RX/TX, мощности (50/20/5 Вт), доступ к управлению CTCSS или DCS аналоговой FM, с программируемыми временными интервалами и идентификатором CW или голоса (если установлена опция FVS-2). Также поддерживается возможность дистанционного управления для функции Shutdown (отключение). На задней панели имеется I/O порт, с помощью которого можно подключить "С-COM 7330 Тройной контроллер ретранслятора." Этот контроллер позволяет управлять максимум тремя DR-1X, чтобы запрограммировать сигнал, таймер, режим доступа и многое другое. 
Новый DR-1X будет доступен с июня 2014 года. Пожалуйста, обратите внимание на техническую документацию для получения информации о ценах. Теперь мы с нетерпением будем ждать ваших заказов.

 

DR-1X 
Цифровой репитер VHF / UHF C4FM/FM 
50 Вт 144/430 МГц двухдиапазонный

 

Основные особенности System Fusion:

- Функция AMS (автоматический выбор режима) автоматически распознает принят ли цифровой C4FM сигнал или обычный FM 
- Улучшенный показатель BER (Bit Error Rate- характеристика качества передачи) C4FM обеспечивает превосходное качество звука 
- Улучшенный показатель BER (Bit Error Rate) C4FM обеспечивает лучший прием во время движения и в условиях слабого приема сигнала 
- Использование всего диапазона 12,5 кГц обеспечивает высокую скорость передачи данных 
- Функция быстрого снимка позволяет получать изображения, вместе с информацией о времени и данными GPS 
- Цифровая функция GM (цифровая функция контроля группы) 
- Высокоточная функция навигации 

 

Особенности радиостанции:

- Режимы модуляции: 12,5 кГц цифровой C4FM, обычный FM 
- Функция AMS (автоматический выбор режима) автоматически распознает является ли сигнал цифровым C4FM или обычным сигналом FM 
- 3,5-дюймовый цветной сенсорный экран 
- Очень надежная в работе, высокая выходная мощность: 50Вт/20Вт / 5Вт 
- Аварийный режим: Поддержка автоматической смены резервной батареи 
- Разъем под микрофон на передней панели предназначен для использования при проверке передачи, и позволяет использовать репитер в качестве базовой станции 
- Встроенный большой динамик с регулятором громкости на передней панели 
- Внутренний источник питания 
- 19" монтируется в стойку 
- Высокая стабильность ± 2.5ppm TCXO 
- DSQ сигналинг (код цифрового шумоподавления) 
- CTCSS и DCS сигналинг 
- Функция оповещения идентификатора (Голосовой режим: требуется FVS-2) 
- На задней панели имеется I/O порт, с помощью которого можно подключить "С-COM 7330" контроллер ретранслятора. 
- Работа в качестве базовой станции 

Характеристики

Диапазоны частот: RX / TX: 144 до 148 МГц, от 430 до 450 МГц 
Шаг канала: 5/6.25 кГц 
Тип цепи: супер-гетеродин с двойным преобразованием 
Тип модуляции: F1D, F2D, F3E, F7W 
Выходная мощность: 50 Вт/20 Вт / 5 Вт 
Размер (Ш х В х Г): 482 х 88 х 380 мм без ручки и провода 
Вес (прибл.): 10 кг 
Кол-во в упаковке: 1 

Аксессуары

Шнур питания 
Шнур питания с предохранителем для резервного аккумулятора, запасной предохранитель 15А/5А, кабель для подключения к ПК SCU-20, ножки (4шт) 
Руководство по эксплуатации

Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru