Радиостанции BARRETT армейского и гражданского назначения
Официальный дистрибьютор Barrett Communications (Австралия) в Украине ТОВ “КОН ЦЕРН АЛЕКС”
Представляем Вашему вниманию оборудование австралийской фирмы Barrett Communications Pty. Ltd., известной во всем мире как производитель надежного радиооборудования КВ и УКВ диапазона, армейского и гражданского назначения.
Многоцелевые средства армейской тактической радиосвязи ( далее - р/с) диапазонов КВ 1,6-30МГц и УКВ 30-87МГц производства Barrett Communications (Австралия).
Данные средства обеспечиваю возможность цифровой шифрованной голосовой радиосвязи и передачи данных в режимах:
- фиксированных каналов,
- поиска свободного канала,
- скачкообразной перестройки частоты (требуется экспортная лицензия Министерства обороны Австралии)
УКВ р/с предлагаются в следующих исполнениях:
- PRC-2080 5Вт УКВ ручной портативный комплект (связь в радиусе до 8 км);
- PRC-2081 25Вт УКВ ранцевый носимый комплект ;
- PRC-2082 50Вт УКВ мобильный комплект для транспортных средств, в т.ч для подвижного командного пункта;
- 50Вт УКВ базовая;
- 50Вт УКВ ретрансляционная система (увеличивает радиус действия подвижных средств связи).
Данные средства связи используются на уровне отделение- взвод - рота - батальон.
КВ р/с предлагаются в следующих исполнениях:
- PRC-2090 30Вт КВ ранцевый носимый комплект;
- PRC-2091 100Вт КВ тактический мобильный комплект для транспортных средств, в т.ч для подвижного командного пункта;
- PRC-2092 100Вт КВ тактический базовый комплект для локального командного пункта;
- 2075 500 Вт стационарная базовая станция большой мощности для центрального командования;
- 2075 1000 Вт стационарная базовая станция большой мощности для центрального командования;
Данные средства связи используются на уровне батальон - бригада - центральное командование.
Шлюзы
2063 Тактический шлюз для объединения радиосетей Barrett КВ и УКВ;
2064 Тактический голосовой шлюз для объединения радиосетей различных производителей и диапазонов, а также телефонных сетей в одну сеть.
Отличительной чертой продукции Barrett является законченность системных решений на основе своих радиостанций. В настоящее время реализованы автоматические системы дистанционного управления трансивером, выхода по КВ-каналу в телефонную сеть, передачи данных, факсимильных сообщений, электронной почты, подключения к сети Интернет, передачи графического изображения, текстов, файлов и т.п.
Затраты на оснащение данными средствами радиосвязи батальона отдельной десантно - штурмовой бригады в состав которой по штатам армии по состоянию на 1991 год, должен входить взвод связи с оснащением - 65 р/с, из которых: отделение Командно Штабного Автомобиля - 4 р/с, отделение связи - 61 р/с, - составляют порядка 500 тысяч долларов США на условиях CIP международный аэропорт г.Киева. Пошлинами и НДС не облагается согласно последним изменениям в законодательстве.
Детальный прайс-лист будет предоставлен по Вашему запросу.
Сроки поставки данного оборудования составляют ориентировочно - 90 дней с момента оплаты заказа, учитывают время получения экспортной лицензии Министерства обороны Австралии на поставку опции скачкообразной перестройки частоты.
Данная продукция, в случае ее оснащения указанной опцией, может быть поставлена только в адрес специального пользователя радиочастот, в понимании Закона Украины «Про радиочастотный ресурс», как например Министерства обороны, Министерство внутренних дел и т.п.
PCR-2080 Tactical VHF radio system
PCR-2090 Tactical HF radio system
BARRETT communications
Как и куда распространяются радиоволны
Чем длиннее, тем дальше
Каждый раз, когда вы беретесь за ручку настройки радиоприемника и отправляетесь в путешествие по эфиру, перед вами открывается удивительный мир странствий, интересных и совсем не опасных приключений. Единственным их результатом будет расширение ваших знаний и кругозора.
Для обычного путешествия, как известно, нужны карта, компас (а лучше, спутниковый карманный приемник-навигатор - такие уже имеются), еще немного туристического снаряжения и элементарные знания и навыки. Для путешествия по эфиру, не выходя из дома, нужно все то же самое: снаряжение - радиоприемник, карта и "компас", справочник по радиостанциям мира и, конечно, знания и навыки. Как раз то, о чем мы сегодня собираемся поговорить.
Бесполезно искать ночью иголку в стоге сена, как бесполезно днем, находясь на территории России, искать в эфире американские радиостанции на средних волнах, хотя найти их можно ночью и днем. Итак, все наше многословие свелось к одному: вращая ручку настройки приемника, полезно хотя бы немного знать о распространении радиоволн на Земле.
Последней фразой я хотел подчеркнуть, что в Космосе все гораздо проще. Радиоволны, как и световые, и другие электромагнитные волны, распространяются прямолинейно. Они стараются это делать и на Земле, но она-то, как справедливо заметили еще средневековые ученые, круглая, и дальше горизонта на ней ничего не видно! Какой же смелостью надо было обладать Колумбу, а затем и Магеллану, чтобы экспериментально, собственным путешествием доказать сферичность Земли!
Трудно сравнивать, но изрядной смелостью обладал и Маркони, когда не прошло и десятилетия после первых успешных опытов Генриха Герца, Оливера Лоджа и Александра Попова по передаче и приему радиоволн, а он уже поставил целью послать радиосигналы через Атлантический океан. Были натянуты гигантские по тем временам проволочные антенны, построены мощные передатчики. И такая связь между побережьями Англии и Канады была впервые осуществлена в 1903 г. Успех был огромен, хотя всего-то и принято было достоверно три телеграфных тире.
В те годы уже было экспериментально, т. е. методом проб и ошибок, установлено, что чем длиннее волна, тем дальше она распространяется. Первую трансатлантическую связь провели на сверхдлинных волнах. Отсюда и применение гигантских антенн - ведь длина волны первых примитивных радиопередатчиков прямо зависела от длины антенны. Кроме того, чтобы антенна эффективно излучала, ее длина должна быть хотя бы порядка четверти длины волны. Тогда же необходимо было объяснить факт зависимости дальности распространения от длины волны явлением дифракции. Упрощенно говоря, дифракция - это огибание волной препятствия, а препятствием является высота шарового сегмента Земли, разделяющего приемную и передающую радиостанции (рис. 16). От Санкт-Петербурга до Москвы, как известно, около 600 км. Расчет дает высоту шарового сегмента h около семи километров, следовательно, длинные, километровые волны распространяются на такие расстояния.
У читателя может возникнуть вопрос: а как определить длину волны? Прежде ее обозначали в метрах прямо на шкале приемника, а теперь все чаще в килогерцах и мегагерцах (соответствующих длине волны), а уж современные цифровые шкалы и подавно измеряют только частоту. Длина волны l и частота колебаний f радиопередатчика обратно пропорциональны и связаны через скорость распространения радиоволн - c, такую же, как и скорость света: l= c/f. Практически, чтобы узнать длину волны в километрах, надо 300 разделить на частоту в килогерцах. Например, московская длинноволновая радиостанция на частоте 171 кГц (бывшая имени Коминтерна) имеет длину волны около 1,75 км. Ее можно слушать почти на всей территории европейской части России круглосуточно. Увлечение длинными волнами на заре радиотехники породило великую эпоху Радиостроя, когда антенны становились все выше, а радиостанции все мощнее. В 30-е годы радиостанция им. Коминтерна была самой мощной в Европе, излучая до 500 кВт, и ее слушали на детекторные приемники в самых глухих и отдаленных деревнях.
Радиостанций становилось все больше, и они стали создавать помехи друг другу. Здесь надо заметить, что при передаче радиовещательной программы станция занимает в эфире не одну частоту, а целую полосу частот шириной до 20 кГц. В справочниках указывают центральную частоту этой полосы, называемую несущей частотой, или просто несущей. Именно эту частоту и генерирует высокочастотный, или, как его называют, задающий генератор передатчика. Затем его колебания усиливаются и модулируются колебаниями звуковых частот.
В 30-е годы было достигнуто соглашение - установить разнос частот радиостанций в 9 кГц. Оно соблюдается и поныне. Теперь легко сосчитать, что на длинных волнах, в участке, отведенном для радиовещания (примерно от 150 до 400 кГц), можно разместить не более двух с половиной десятков радиостанций.
Со временем стали строить средневолновые радиостанции - в этом диапазоне около 120 частотных каналов, но и дальность распространения меньше, поскольку длина волны короче ( вспомните про дифракцию). Поэтому один и тот же частотный канал стали отводить нескольким, достаточно удаленным друг от друга радиостанциям. В дневное время они не создавали помех друг другу. Иное дело ночью, дальность распространения длинных и средних волн намного возрастала и становились слышны радиостанции, удаленные на несколько тысяч километров. Резко возрастали и взаимные помехи. Отчего это?
Ученые уже имели рабочую гипотезу. Высказал ее Оливер Хевисайд, чудаковатый английский джентльмен, чопорный и безукоризнено одетый, когда появлялся на людях. Но делать он этого не любил, а любил работать по ночам в жарко натопленной комнате и с наглухо занавешенными окнами. Говорят, что когда его избрали действительным членом Королевского Общества (по-нашему - Академии наук) и пригласили на торжественную церемонию избрания (черные мантии, головные уборы с четырехугольным верхом), он не нашел гинеи (а такой символический взнос надо было уплатить) и просто не пошел на заседание! К чести общества надо сказать, что оно все-таки избрало Хевисайда не действительным, но почетным членом, при этом не требовалось ни его присутствия, ни гинеи.
Так в чем же состояла гипотеза?
3.2. Жизнь преподносит сюрпризы!
Пока шла драка за распределение частот на длинных и средних волнах, короткими никто не интересовался, они считались просто непригодными для дальней радиосвязи и за ненадобностью были отданы... радиолюбителям. А такие уже были в начале двадцатых годов. Ведь и радиосвязь, и наблюдение за сигналами радиостанций - это очень интересно! И вот, от радиолюбителей стали поступать сенсационные сообщения: с помощью простейших передатчиков мощностью в несколько ватт и примитивных приемников устанавливались связи на десятки тысяч километров! Такой феномен уже нельзя объяснить дифракцией.
Тут-то и вспомнили гипотезу Хевисайда: верхние слои атмосферы должны быть ионизированы солнечным излучением. Ионизированный газ (ионосфера) содержит много свободных электронов и может проводить электрический ток, а значит, должен отражать радиоволны. Скорые на подъем американцы соорудили импульсный передатчик, и в 1924 г. инженеры Брейт и Тьюв получили отражение от ионосферы при вертикальном зондировании и измерили время запаздывания отраженного импульса, а по нему вычислили высоту отражающего слоя.
Ионосферу долгое время называли слоем Хевисайда. Позднее Эпплтон, анализируя отраженные сигналы, обнаружил, что отражающих слоев несколько. Ему же мы обязаны и названиями слоев. В своих расчетах он обозначил вектор напряженности электрического поля, как это обычно и делается, буквой Е. Когда же понадобилось обозначить поле другого отражения, он выбрал следующую букву алфавита - F. Убедившись, что отражения идут от разных слоев, он решил, что и названия им готовы - Е и F, при этом имея в виду, что в дальнейшем могут быть открыты и другие слои, для которых пригодятся и предыдущие, и последующие буквы алфавита. Это предвидение вполне оправдалось. Теперь известно, что в летний полдень можно наблюдать, по крайней мере, четыре четко различимых слоя. Самый нижний, слой D на высоте около 70 км, существует только днем. Слой E на высоте 90...120 км существует круглосуточно, лишь ночью в нем уменьшается электронная концентрация (Солнце-то, причина ионизации, не светит!) и увеличивается высота. То же, но в меньшей степени, происходит и со слоем F, но он расположен значительно выше - 200...250 км. Днем он распадается на два слоя - F1 и F2.
Информация взята из сайта http://www.chipinfo.ru