АНТЕННЫЕ ПОВОРОТНЫЕ УСТРОЙСТВА
Yaesu G-250 Yaesu G-650A
Yaesu G-450A Yaesu G-1000DXA
Yaesu G-800SA Yaesu G-2800DXA
Yaesu G-800DXA Yaesu G-550A
Yaesu G-5500
Alfa SPID BIG-RAS
Alfa SPID RAK
Alfa SPID RAK/HR

Цены и наличие товара Вы можете уточнить здесь

 

Yaesu G-250

Описание

Поворотное устройство для направленных антенн с возможностью управления скоростью. Напряжение питания 220В (напряжение на мотор - 24В), диаметр мачты 25-38 мм, время поворота 43 сек (360 градусов), вес мотора 1.8 кг, контроллера - 1,1 кг.
В комплекте ротатор, пульт управления, разъёмы

Характеристики

Напряжение питания 220 В (напряжение на мотор - 24 В)
Потребляемая мощность 37 ВА
Вращающий момент 200 кг*см
Тормозной момент 600 кг*см
Диаметр мачты 25-38 мм
Время поворота 55 с (50 Гц)
43 с (60 Гц)
Площадь ветровой нагрузки 0,2 м 2
Максимальный вес антенны (вертикальная нагрузка) 50 кг
Управляющий кабель 6-проводной (20 AWG)
Размеры диаметр мотора 142 мм, высота 315 мм
Вес Мотор - 1,8 кг 
Пульт управления - 1,1 кг

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM


Yaesu G-650

Yaesu G-650

Описание

Поворотное устройство для направленных антенн производства Yaesu. Напряжение питания 220В AC (на мотор - 24 В DC), диаметр мачты 32-63 мм, время поворота 51 с (из расчета на 360°), угол поворота 450°, вес мотора 3,5 кг, контроллера - 2,71 кг. Рабочий диапазон температур - от 0° до +40° С для пульта управления, от -20° до +40°С для мотора.


Характеристики

Напряжение питания 220 В (напряжение на мотор - 24 В)
Потребляемая мощность 0,25 А
Вращающий момент 600 кг*см
Тормозной момент 3000 кг*см
Диаметр мачты 32-63 мм
Время поворота 63 с (360°)
Площадь ветровой нагрузки 2 м2
Максимальный вес антенны (вертикальная нагрузка) 100 кг (непрерывная нагрузка)
300 кг (пиковая)
Управляющий кабель 5-проводной
Размеры диаметр мотора 186 мм, высота 263 мм 
пульт управления 190х125х150 мм
Вес мотор 3,5 кг 
пульт управления 2,7 кг

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

 



Yaesu G-450A





 

 

 

 

Описание

Антенный ротатор Yaesu G-450A предназначен для использования в сравнительно легких условиях эксплуатации.

Он обеспечивает автоматический плавный старт и остановку, светодиодный индикатор “перехлеста” кабеля и автоматическое растормаживание.
Ротатор обеспечивает угол поворота 450 градусов.

Аналоговый пульт управления с подсветкой оснащен круглым указателем положения антенны с подвижной шкалой азимутов для калибровки после установки антенны.

Характеристики

Требуемый кабель 5-проводной
Напряжение питания 117/220 В
Тормозящий момент 30 кг*м
Вращающий момент 5.5 кг*м
Диаметр мачты 31.75 – 63.5 мм (1.25” - 2.5”)
Вертикальная нагрузка 90.3 кг
Время поворота 51 с
Площадь ветровой нагрузки 1.02 м2
K-Factor 722 ft.-lbs
Вес 2.61 кг (мотор)

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM


Yaesu G-800SA













Описание

Антенный ротатор Yaesu G-800SA предназначен для использования в умеренных условиях эксплуатации.

Он обеспечивает автоматический плавный старт и остановку, светодиодный индикатор “перехлеста” кабеля и автоматическое растормаживание.

Ротатор обеспечивает угол поворота 450 градусов.Аналоговый пульт управления с подсветкой оснащен круглым указателем положения антенны с подвижной шкалой азимутов для калибровки после установки антенны.

Характеристики

Напряжение питания 220 В (напряжение на мотор - 20 В)
Потребляемая мощность 0,5 А
Вращающий момент 800 кг*см
Тормозящий момент 4000 кг*см
Диаметр мачты 38-63 мм
Тип тормоза Механические и электрические стопоры
Время поворота 55 с (360°)
Площадь ветровой нагрузки 2 м2
Максимальный вес антенны (вертикальная нагрузка) 200 кг (непрерывная нагрузка)
800 кг (пиковая)
Управляющий кабель 5-проводной
Размеры диаметр мотора 186 мм, высота 300 мм 
пульт управления 200х130х193 мм
Вес мотор 3,6 кг 
пульт управления 2,8 кг

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

 




Yaesu G-800DXA





 

 

 

 

Описание

Антенные ротаторы Yaesu G-800DXA предназначены для использования в умеренных условиях эксплуатации.
Они обеспечивает регулируемую скорость вращения, предустановку положения, светодиодный индикатор “перехлеста” кабеля и автоматическое растормаживание. Ротатор обеспечивает угол поворота 450 градусов. 

Аналоговый пульт управления с подсветкой оснащен круглым указателем положения антенны с подвижной шкалой азимутов для точной калибровки после установки антенны.

Характеристики

Напряжение питания 220 В (напряжение на мотор - 24 В)
Потребляемая мощность 0,5 А
Вращающий момент 600-1100 кг*см
Тормозящий момент 4000 кг*см
Диаметр мачты 38-63 мм
Тип тормоза Механические и электрические стопоры
Время поворота от 100±10 до 40±5 с (360°)
Площадь ветровой нагрузки 2 м2
Максимальный вес антенны (вертикальная нагрузка) 200 кг (непрерывная нагрузка)
800 кг (пиковая)
Управляющий кабель 5-проводной
Размеры диаметр мотора 186 мм, высота 300 мм 
пульт управления 200х130х193 мм
Вес мотор 3,6 кг 
пульт управления 2,8 кг

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

 


Yaesu G-1000DXA




 


 

 

 

Описание

Антенный ротатор Yaesu G-1000DXA предназначен для использования в тяжелых условиях. Он обеспечивает автоматический плавный старт и остановку, регулируемую скорость вращения, предустановку положения, светодиодный индикатор “перехлеста” кабеля и автоматическое растормаживание.

Ротатор обеспечивает угол поворота 450 градусов. Аналоговый пульт управления с подсветкой оснащен круглым указателем положения антенны с подвижной шкалой азимутов для калибровки после установки антенны.

Характеристики

Требуемый кабель 5-проводной
Напряжение питания 117/220 В
Тормозящий момент 59,86 кг*м
Вращающий момент 5,94-10.92 кг*м
Диаметр мачты 38 – 63,5 мм (1.5” - 2.5”)
Вертикальная нагрузка 164 кг
Время поворота 43-96 с
Площадь ветровой нагрузки 2.183 м 2
K-Factor 2020 ft.-lbs
Вес 2.9 кг (мотор)

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

 


Yaesu G-2800DXA




 

 

 

 

 

Описание

Антенный ротатор Yaesu G-2800DXA предназначен для использования в особо тяжелых условиях эксплуатации.
Он обеспечивает автоматический плавный старт и остановку, регулируемую скорость вращения, предустановку положения, светодиодный индикатор “перехлеста” кабеля и автоматическое растормаживание.

Ротатор обеспечивает угол поворота 450 градусов. 
Аналоговый пульт управления с подсветкой оснащен круглым указателем положения антенны с подвижной шкалой азимутов для калибровки после установки антенны.

Характеристики

Требуемый кабель 6-проводной
Напряжение питания 117/220 В
Тормозящий момент 50 кг*м
Вращающий момент 8-25 кг*м
Диаметр мачты 47,6 – 63,5 мм (1.875” - 2.5”)
Вертикальная нагрузка 246 кг
Время поворота 60-190 с
Площадь ветровой нагрузки 3,158 м2
K-Factor 6870 ft.-lbs
Вес 4,93 кг (мотор)

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

 


 

Yaesu G-550A

Yaesu G-550A

 

 

 

 

 

 

Описание

Данное поворотное устройство позволяет вращать антенны с небольшим весом как в горизонтальной так и в вертикальной плоскости. Оно может быть использовано при работе через спутники и ЕМЕ прохождение. Пульт дистанционного управления с подсветкой обеспечивает индикацию угла места в пределах 180 градусов.


Характеристики

Требуемый кабель 6-проводной
Напряжение питания 117/220 В
Тормозящий момент 40 кг*м
Вращающий момент 14.0 кг*м
Диаметр мачты 38 – 635 мм (1.25” - 2.5”)
Вертикальная нагрузка 80 кг
Время поворота 61 с
Площадь ветровой нагрузки 1.0 м 2
K-Factor 723 ft.-lbs
Вес 3.6 кг (мотор)

Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

 

Yaesu G-5500

Yaesu G-5500

Описание

Поворотное устройство Yaesu G-5500 позволяет вращать антенны как в горизонтальной, так и в вертикальной плоскости. Оно может быть использовано при работе через спутники и ЕМЕ прохождение. Пульт дистанционного управления имеет двойную индикацию.


Характеристики

Требуемый кабель

12-проводной

Напряжение питания

117/220 В

Тормозящий момент

 

Азимутальный ротатор

40.0 кг*м

Ротатор угла места

40.0 кг*м

Вращающий момент

 

Азимутальный ротатор

14.0 кг*м

Ротатор угла места

6.0 кг*м

Диаметр мачты

38-63 мм

Диаметр бума

32-43 мм

Вертикальная нагрузка

 

Азимутальный ротатор

30.0 кг*м

Ротатор угла места

200.0 кг*м

Время поворота

 

Азимутальный ротатор

70 сек.

Ротатор угла места

80 сек.

Площадь ветровой нагрузки

1.0 м 2

K-Factor

578 ft.-lbs

Вес

7.5 кг (мотор)


Аксессуары

gc-050

Упорный подшипник GS-050

gc-065

Упорный подшипник GS-065

gc-680u

Универсальный подшипник GS-680U

gc-680u

Универсальный ротатор подшипника GC-680U

GC-038G

Зажим GC-038 для мачты 

GC-048

Зажим GC-048 для мачты

ga-3000

Виброустойчивое основание GA-3000

yaegl33

Регулировка плиты мачты GL-33

yaesu-25mwp web1

Кабель 25 (40) M-WP

GA2500s

Виброустойчивое основание GA-2500

40m

Коннекторы 25 (40) М-WP

COX-2MM

Антенный кабель COX-2MM

Alfa SPID RAK

Yaesu SPID RAK

Описание

Поворотное устройство SPID типа RAK средней или высокой мощности входит в общий класс устройств HyGain TailTwister или Yaesu G-1000/2800, но с расширенными цифровыми свойствами.

Новое: все поставляемые нами поворотные устройства SPID стандартно имеют встроенный интерфейс слежения через USB.

Механические затраты сведены к минимуму благодаря использованию простого двуприводного двигателя. Считывание положения производится магнитным переключателем. онтроллер оснащен всем пакетом функций, включая цифровое считывание. Свойства контроллера могут быть дополнены в дальнейшем при помощи плагина PROM.

Параметры
Вращающий момент варьируется от 1400 до 3200 lb-inch с напряжением питания двигателя от 12 до 18В. Вращающий момент при 18В составляет 3240 lb-inch (366Nm). Это ощутимо больше, чем у всех остальных поворотных устройств в той же ценовой категории, и даже больше, чем у поворотных устройств, которые стоят в два раза больше (Yaesu 2800 или Orion 2800). Адаптор для крепления на опорную плату в части главной мачты.

Поворотное устройство имеет точность определения положения 1 градус, подключение может пройти через центр поворотного устройства, что защитит от повреждения кабеля. Двигатель высокого вращающего момента низкого напряжения.

Хакактеристики контроллеров SPID для всех поворотных устройств

  • ручной, автоматический, сканирующий и программируемый режимы
  • цифровое считывание с разрешением 1 градус
  • большой зеленый жидкокристаллический дисплей
  • встроенный интерфейс слежения для компьютера через USB
  • включает режим совместимости с Hygain, Yaesu и Orion
  • скорость и диапазон вращения
  • 12В: AZ 130 сек/ 360°
  • 18В: AZ 100 сек/ 360°
  • Поворотному устройству требуется внешний блок питания, напряжение от 12 до 18В. См. на странице «блоки питания» (12В, подходит для кемпинга, экспедиций, VHF/UHF поездок)
  • Можно обнулить в любой позиции для определения неточности при инсталляции или скольжения антенны при креплении.
  • Большой перебег (+/-180) с электронным лимитом. Программируемые возможности идеальны для сторонних приложений.
  • Маленькая передняя панель, которая помогает избежать нагромождения блоков и занимает не приоритетное пространство.
  • Имеет мышку с шестью программируемыми пресетами

Характеристики

Технические характеристики: SPID RAK поворотное устройство
  RAK @ 12В RAK @ 18В
Вращающий момент lbs/NM 1327 lb/ 150 Nm 2734 lb/ 309Nm
Тормозящий момент lbs/NM 13984 lb/ 1580 Nm 13984 lb/ 1580 Nm
Тормозная конструкция Двойной привод Двойной привод
Вертикальная нагрузка lbs/kg >639 lbs / 290 Кг >639 lbs / 290 Кг
Скорость вращения (360) 120 сек 90 сек
Разрешение 1.0° 1.0°
Диапазон вращения 360° 360°
Вес lbs/ масса кг 20 lbs/ 9 кг 20 lbs/ 9 кг
Датчик положения Переключатель Переключатель
Размер мачты дюйм/мм 
нижнее/верхнее крепление
2,6 дюйм/ 66 мм 
2,0 дюйм/ 51 мм
2,6 дюйм/ 66 мм 
2,0 дюйм/ 51 мм
Кабель управления 4 4
Окружающая среда земля, без мобильных сигналов и/или прикрытие
MTBF 15000 часов @ от -20°C до +55°C
Технические характеристики контроллера
Напряжение источника питания 12 В 18 В
Потребляемый ток источника питания 3…5А 3…6А
Оснащен Цифровой контроллер, встроенный интерфейс управления компьютером (USB), программное обеспечение, мышка, кабель для компьютера
Размеры 220x125x40 мм
Вес 0.9 кг
Корпус Алюминий/сталь
Окружающая среда земля/вне зоны мобильного покрытия
MTBF 15000 часов @ от -5°C до +40°C
Дисплей 4-значный (зеленый)
4-контактный кабель управления Подключение inc. 1* 4 pin-DIN connector

Опции

Доступная опция:

Вместо стандартного контроллера Rot1Prog Вы можете заказать контроллер MD-02 (опция MD-01. тип крепления 19 зубчатая рейка) Контроллеры MD-01 и MD-02 имеют намного больше функций по сравнению с Rot1Prog.

Новые опции:

  • мягкий пуск и выключение, возможность запрограммировать функции
  • полное USB управление с помощью ПО MD01dde.exe
  • одним контроллером можно управлять двума поворотными устройствами
  • встроенный мощный интерфейс слежения
  • двухлинейная подсветка дисплея
  • полный доступ через IP адрес (опция)

Alfa SPID BIG-RAS

Yaesu SPID BIG-RAS

Описание

SPID подъемно-поворотное устройство (BIG-RAS) – это сверхмощное антенное поворотное устройство с контроллером. Данное поворотное устройство предназначено для больших спутниковых антенн и выпускается вместе с контроллером. Устройство спроектировано для крепления на трубу или на дополнительную плату крепления адаптора для стандартного внутреннего крепления. Легко управляет 3-х метровой параболической антенной

Кронштейн сверхмощной антенны
Поворотное устройство AZ & EL может быть скреплено к трубе не более 68 мм
Максимальный диаметр трубы на подъеме составляет 52 мм
Сверхмощный кронштейн может поднять на поворотное устройство 3-х метровую антенну

Параметры поворотного устройства RF HAMDESIGN SPID BIG-RAS:

  • двойной металлический привод для удержания положения на ветру
  • двигатель высокого вращающего момента низкого напряжения
  • Магнитный переключатель выдает 1 пульс при разрешении 0,5 градусов
  • Низкий люфт
  • Использует 8-ми кабельное подключение (4 для каждого поворотного устройства) для каждого поворотного устройства)

Стандарты RAS <> BIG RAS

  • 2* двойной привод
  • 120 зубчатая рейка = на 30% больше чем у RAS
  • минимум в два раза мощнее, чем стандартный RAS
  • Вес = 22кг
  • Разрешение = 0,5 градусов
  • может удержать антенны до 5 метров
  • напряжение питания от 12 до 18 В

BIG-RAS AZ & EL Управляющее поворотное устройство (цифровое, тип Rot2Prog):

  • двойной зеленый жидкокристаллический дисплей вывода цифровых данных
  • встроенный интерфейс. управляемый компьютером (USB)
  • ручное и компьютерное управление
  • разрешение = 0,5 градусов
  • совместим с протоколом Yaesu GS-232 или может использовать свой SPID протокол
  • предусмотрена «мышка» для легкого ручного управления

Характеристики

Технические параметры подъемно-поворотного устройства
  BIG RAS @ 12В BIG RAS @ 18В
Вращающий момент lbs/NM >4027 lb/ 455 Nm >4425 lb/ 500Nm
Тормозящий момент lbs/NM 24000 lb/ 2712 Nm 24 000 lb/ 2712Nm
Тормозная конструкция Двойной привод Двойной привод
Вертикальная нагрузка lbs/kg >700 lbs / 318 Кг >700 lbs / 318 Кг
Скорость вращения (360) 120 сек 90 сек
Разрешение 0,5° 0,5°
Диапазон вращения 360°/180° 360°/180°
Вес lbs/ масса кг 48 lbs/ 22 кг 48 lbs/ 22 кг
Датчик положения Переключатель Переключатель
Размер мачты дюйм/мм нижнее крепление 2,6 дюйм/ 66 мм 2,6 дюйм/ 66 мм
Размер мачты дюйм/мм подъемное устройство 2,0 дюйм/ 55 мм 2,0 дюйм/ 55 мм
Окружающая среда земля, без мобильных сигналов и/или прикрытие
MTBF 12500 часов @ от -20°C до +55°C
Кабель управления 8 8
Технические параметры контроллера
Напряжение источника питания 12 В 18 В
Потребляемый ток источника питания 6…10А 6…15А
Размеры 245x235x40 мм
Вес 1.5 кг
Корпус Алюминий/сталь
Окружающая среда земля/вне зоны мобильного покрытия
MTBF 15000 часов @ от -5°C до +40°C
Дисплей 2* 4-значный (зеленый)
8-контактный кабель управления Подключение inc. 2* 4 pin-DIN connector

Опции

Доступная опция:

  • Вместо стандартного управляющего устройства Rot2Prog Вы можете заказать управляющее устройство MD-02 (вариант MD-01, тип крепления 19" зубчатая рейка).
  • У управляющих устройств MD-01 и MD-02 намного больше функций, чем у стандартного Rot2Prog.
  • Опционально поставляется манипулятор-мышь.

Новые опции:

  • мягкий пуск и выключение
  • полное USB управление с помощью ПО MD01dde.exe
  • встроенный мощный интерфейс слежения
  • двухлинейная подсветка дисплея
  • полный доступ через IP адрес (опция)

Alfa SPID RAK/HR

Yaesu SPID RAK-HR

Описание

Ротор высокого разрешения SPID для поворотного устройства, разрешение: 0,2 градуса

SPID RAK/HR и MD-02 это поворотное устройство высокой точности. Контроллер ротора MD-02 имеет много функций, которые могут быть изменены пользователем. Для непрерывной работы рекомендуется использование блока питания с двойным напряжением типа PS-02.

Ротор SPID RAK/HR однодвигательный и у него есть датчики положения (передача 0,125 градусов на импульс), отсчет будет 0,1 градус на импульс и будет отображаться на дисплее.

Для управления ротором через контроллер MD-02 Вам понадобится 2-контактный кабель управления для контроля двигателя азимута и 4-контактный для установления датчиков положения.

* RAK/HR может выдержать несколько конструкций, расположенных друг на друге.

Поворотной устройство SPID RAK/HR может быть закреплено на трубе макс 68 мм.
В наличии имеется сверхмощная платформа для крепления XXL , ротор теперь может быть закреплен параллельно с мачтой и упорным подшипником.

В комплект RF HAMDESIGN SPID RAK/HR входят:

  • ротор высокого разрешения RAK/HR
  • MD-02 контроллер ротора с дисплеем (опция MD-01, 19 зубчатая рейка)
  • встроенный интерфейс слежения MD-02 (USB)
  • MD-01dde ПО (для управления с компьютера)
  • USB драйвер
  • Коннекторы

Технические параметры:

  • двойной металлический привод для удержания положения на ветру
  • двигатель высокого вращающего момента низкого напряжения
  • электронный датчик положения HALL
  • Низкий люфт
  • использует 2-кабельное подключение (2 для каждого поворотного устройства)
  • использует 4-кабельное подключение для датчика положения
  • бесплатное обновление прошивки через серийный порт
  • смена скорости поворотного устройства: см. страницу Характеристики
  • доступно программное обеспечение для слежения (разрешение 0,1 градусов) Orbitron, PstRotator(Moonsked скоро доступно)

MD-02 контроллер

Контроллер SPID RAK/HR, тип MD-02 со встроенным интерфейсом слежения, управляемый USB.

У Контроллера MD-02 есть выходы для COM0, COM1, USB, USB HOST (в будущем), I2C, SPI
Также может быть добавлен модуль ETHERNET и RS425 или RS422.

На MD-02 установлен мощный процессор LPC1768 (100Mhz) или LPC1769 (120Mhz) с высокой памятью.

Другая или модифицированная программа может быть легко добавлена и изменена.
Стандартно устанавливаются основные программы (функция на подобие BIG-RAS Driver), но есть также выбор вручную.

SPID RAK/HR необходим блок питания с двойным напряжением, 15В/22В
Мы рекомендуем блок питания PS-02

Характеристики

Технические параметры контроллера MD-02
Напряжение источника питания 13.8 и 24 В
Потребляемый ток источника питания 6…18А
Оснащен встроенный интерфейс управления компьютером (USB), программное обеспечение MD01dde.exe, коннекторы
Размеры Под монитор 386x310x70 мм
Вес 1.9 кг
Корпус Алюминий/сталь
Окружающая среда земля/вне зоны мобильного покрытия
MTBF 15000 часов @ от -5°C до +40°C
Дисплей 2* 4-значный (зеленый)
Технические параметры:
SPID RAKH/HR поворотное устройство
RAKH/HR
Вращающий момент lbs/NM 2734 lb/ 309 Nm
Тормозящий момент lbs/NM 13984 lb/ 1580 Nm
Тормозная конструкция Двойной привод
Вертикальная нагрузка lbs/kg >639 lbs / 290 Кг
Скорость вращения в градусах 5 градусов/сек (стандарт PSU PS-02)
Опция: 4,2 градуса/сек
Разрешение 0,2°
Диапазон вращения 360°
Вес lbs/ масса кг 20 lbs/ 9 кг
Датчик положения HALL
Размер мачты дюйм/мм нижнее-верхнее крепление 2,6 дюйм/ 66 мм - 2,0 дюйм/ 55 мм
Окружающая среда земля, без мобильных сигналов и/или прикрытие
MTBF 12500 часов @ от -20°C до +55°C
Кабель управления двигателя 2-контактный / 1,5 мм2
Кабель управления датчиков 4-контактный / 0,2 мм2

Опции

Другие опции:

  • дополнительный USB выход
  • Скачивание информации из компьютера через COM и USB.
  • изменение программы MD-01 через новое ПО для компьютера (больше не нужно менять местами процессор)
  • есть возможность управлять внешними устройствами через l2C или SPI rail
  • Процессор LPC1768 (32 бит и 512 память)

Блок питания PS-02
PS-02, SPID блок питания с двойным напряжением для SPID BIG-RAK/HR и MD-02.
Данный блок обеспечивает MD-02 или иные блоки другим напряжением, большим, чем текущее.

Мы рекомендуем использовать SPID BIG-RAK/HR + MD-02 с блоком питания PS-02 с установленным модулем: 1* 150W / 15Volts - 10Amp and 1* 480W / 22Volts - 22Amp

Модуль PS-02 оснащен защитой от повышенного напряжения и вентиляторами с автоматическим включением/выключением.
Блоки PS-02 доставляются с коннекторами.

Радиотехника
Радиотехника, наука об электромагнитных колебаниях и волнах радиодиапазона — о методах их генерации, усиления, излучения, приёма и об их использовании; отрасль техники, осуществляющая применение электромагнитных колебаний и волн радиодиапазона для передачи информации — в радиосвязи, радиовещании и телевидении, в радиолокации и радионавигации, при контроле и управлении машинами, механизмами и технологическими процессами, в разнообразных научных исследованиях и т.д. Радиодиапазон охватывает спектр электромагнитных волн (ЭВ) длиной от нескольких десятков тыс. км до десятых долей мм.
Развитие Р. тесно связано с достижениями в области радиофизики, электроники, физики полупроводников, электроакустики, теории колебаний, теории информации (см. Информации теория), и различных разделах математики, а также с прогрессом в технике высокочастотных измерений (см. Измерительная техника, Радиоизмерения), вакуумной и полупроводниковой технике (см. Полупроводниковая электроника), в производстве источников электропитания и др. В Р. входит ряд областей, главные из которых — генерирование электрических колебаний, усиление электрических колебаний, их преобразование, управление ими (см. Модуляция колебаний), антенная техника (см. Антенна, Излучение и приём радиоволн), распространение радиоволн в свободном пространстве, в различных средах (ионосфере, почве) и в направляющих системах (кабелях, волноводах), фильтрация электромагнитных колебаний, демодуляция, воспроизведение переданных сигналов (речи, музыки, изображений, телеграфных и иных знаков), контроль, управление и регулирование при помощи ЭВ и колебаний (посредством радиоэлектронных систем).
История Р. восходит к работам М. Фарадея, заложившего основы учения об электрическом и магнитном полях (1837—46). Фарадей высказал мысль о том, что распространение электрических и магнитных воздействий происходит с конечной скоростью и представляет собой волновой процесс. Эти идеи были развиты Дж. К. Максвеллом, математически описавшим (1864) известные электрические и магнитные явления системой уравнений, из которых следовала возможность существования электромагнитного поля, способного распространяться в пространстве в виде ЭВ, частным случаем которых являются световые волны.
ЭВ радиодиапазона (с длиной волны около 1 дм) были впервые получены и изучены Г. Герцем (1886—89), который осуществил их генерирование и излучение при помощи вибратора, возбуждаемого искровым разрядом (см. Герца вибратор). При помощи второго вибратора, в котором под действием принимаемой волны проскакивала искра, Герц регистрировал ЭВ. Герц показал, что эти волны способны отражаться, преломляться, интерферировать и поляризовываться подобно световым волнам, однако он не предвидел возможности применения ЭВ для передачи информации. Существенную роль в опытах Герца играло явление резонанса, подробно изученное В. Ф. К. Бьеркнесом (1891). Важнейшая формула для определения резонансной частоты колебательного контура при отсутствии затухания (идеальный контур) была получена ещё в 1853 У. Томсоном (Кельвином). Э. Бранли (Франция) обнаружил (1890) и изучил явление уменьшения сопротивления металлического порошка при воздействии на него электрических колебаний и восстановления исходного высокого сопротивления при встряхивании. О. Лодж (Великобритания) использовал это явление для индикации ЭВ при воспроизведении опытов Герца (1894); прибор в виде заполненной металлическими опилками стеклянной трубки с электродами на концах он назвал когерером.
А. С. Попов, развивая опыты Герца и стремясь решить задачу беспроволочной связи при помощи ЭВ, усовершенствовал когерер, применив для восстановления его сопротивления автоматическую систему, осуществлявшую встряхивание когерера после воздействия на него ЭВ. Автоматический когерер стал основой первого аппарата для обнаружения и регистрации сигналов (их приёма) в системе беспроволочной связи. Попов также обнаружил, что присоединение к когереру вертикального провода — антенны — приводит к увеличению чувствительности такого приёмного устройства. Свой первый в мире радиоприёмник Попов продемонстрировал в действии 25 апреля (7 мая) 1895 во время доклада на заседании физического отделения Русского физико-химического общества. Примерно год спустя опыты по использованию радиоволн для беспроволочной связи продемонстрировал Г. Маркони, причём его аппаратура в основных чертах совпадала с аппаратурой, разработанной Поповым.
Начальный период развития Р. — период создания простейших передающих и приёмных радиостанций, работавших на сравнительно коротких радиоволнах, — характеризовался применением сильно затухающих радиоволн — коротких волн, возбуждаемых вибратором Герца. Дальность радиосвязи постепенно увеличивалась благодаря переходу к более длинным волнам, возрастанию мощности передатчиков и размеров (высоты и числа проводов) антенны. Увеличению дальности способствовало и применение заземления или системы низко расположенных проводов («противовеса»). Дальность и избирательность (селективность) приёма также существенно увеличились благодаря переходу на слуховой (телефонный) приём с применением детектора (сотрудники Попова П. Н. Рыбкин и Д. С. Троицкий, 1899).
Следующий существенный шаг в развитии Р. сделал К. Ф. Браун, предложивший (1899—1900) разделить антенну и искровой разрядник. При этом разрядник помещался в замкнутом колебательном контуре, а антенна связывалась с этим контуром индуктивно, при помощи высокочастотного трансформатора. Схема Брауна позволяла излучать в пространство существенно большую часть энергии, запасённой в первичном колебательном контуре, однако значительная часть её возвращалась обратно из антенны в контур, возбуждая в нём новую искру, что приводило к потерям энергии. В 1906 М. Вин (Германия) предложил специальный разрядник, препятствовавший возврату энергии из антенны в колебательный контур. При этом колебания в антенне затухали слабо и почти вся энергия излучалась в виде радиоволн.
Дальнейшим шагом в развитии радиоустройств было применение незатухающих радиоволн, возбуждаемых дуговыми генераторами и машинными генераторами высокой частоты. Удачные образцы машин высокой частоты индукторного типа построил в 1912—34 В. П. Вологдин. При помощи машин Вологдина в 1925 впервые была осуществлена радиосвязь между Москвой и Нью-Йорком. В начале 20-х гг. О. В. Лосев применил для генерирования электромагнитных колебаний кристаллический детектор.
Коренные изменения во все области Р. внесло развитие и применение электронных ламп. В первом ламповом детекторе, предложенном Дж. А. Флемингом (1904), был использован эффект Эдисона — одностороннее прохождение электрического тока в вакууме от накалённой нити (катода) к металлической пластинке (аноду). Но этот детектор, как и приёмная трёхэлектродная лампа Л. де Фореста, уступал по чувствительности кристаллическому детектору, который широко применялся до середины 20-х гг. и вышел из употребления лишь после усовершенствования усилительных радиоламп. Ламповый генератор незатухающих колебаний был изобретён почти одновременно несколькими учёными. Приоритет (1913) принадлежит А. Мейснеру (Германия; см. Генераторная лампа). Существенный вклад в теорию и разработку электронных ламп и схем с их применением внесли М. В. Шулейкин, И. Г. Фрейман, М. А. Бонч-Бруевич, А. И. Берг, А. Л. Минц, Л. И. Мандельштам, Н. Д. Папалекси и др., а также Г. Баркгаузен и Г. Мёллер. Центром исследований в области приёмно-усилительных и генераторных радиоламп в СССР была Нижегородская радиолаборатория (1918—28), вошедшая в 1928 в состав Центральной радиолаборатории. Надёжный приём незатухающих радиоволн в условиях различных помех стал возможным после появления гетеродинного метода (см. Гетеродин). Однако существенным шагом в увеличении чувствительности радиоприёмников было появление схемы регенеративного, а затем супергетеродинного (см. Супергетеродинный радиоприёмник) приёма (Э. Х. Армстронг, 1913, 1918; Л. Леви, Франция, 1918). Теория радиоприёма разработана в трудах Армстронга, а также В. И. Сифорова и многих др.
Развитие Р. сопровождалось освоением различных диапазонов радиоволн. Период от изобретения радио до освоения дуговых и машинных генераторов был связан с постепенным увеличением длины радиоволн от нескольких дм до нескольких км, потому что удлинение радиоволн обеспечивало увеличение дальности и устойчивости радиосвязи как за счёт более благоприятных условий распространения радиоволн, так и вследствие одновременного увеличения излучаемой мощности. Применение радиоламп позволило эффективно генерировать радиоволны в диапазоне от сотен м до нескольких км.
В начале 20-х гг. наряду с радиотелеграфной связью возникло радиовещание. Увеличение количества связных и вещательных радиостанций и стремление к работе на длинных волнах привело к взаимным помехам, к «тесноте в эфире» и необходимости строгого соблюдения международных соглашений о распределении радиоволн (см. Регламент радиосвязи). Радиолюбители, для которых были выделены радиоволны короче 100 м (см. Радиолюбительская связь), обнаружили возможность связи на этих волнах на больших расстояниях при помощи маломощных радиопередатчиков. Исследование законов распространения радиоволн коротковолнового диапазона позволило применить их для связи и радиовещания. Были созданы специальные радиолампы КВ и УКВ (метрового) диапазонов, специальные схемы, а также антенны, предназначенные для этих диапазонов, и фидеры для соединения антенн с передатчиками и приёмниками. Для изучения законов распространения радиоволн много сделали Б. А. Введенский, А. Н. Щукин, В. А. Фок, А. Зоммерфельд и др. Современные радиовещание осуществляется на ультракоротких, коротких, средних и длинных волнах. В создании мощных радиовещательных станций и синхронных сетей СССР занимает ведущее место в мире (А. Л. Минц и др.). Важнейшее значение приобрело появление электронного телевидения, ставшего массовым в середине 20 в. Большой объём информации при передаче движущихся изображений может быть реализован только при помощи очень высокочастотных колебаний, соответствующих метровым и более коротким волнам. Помимо телевизионного вещания, телевизионная аппаратура применяется для наблюдения за процессами, протекающими в условиях, недоступных для человека (космос, большие глубины, зоны повышенной радиации и т.п.), а также в условиях малой освещённости (при астрономических наблюдениях, при наблюдениях в ночное время и т.п.).
Особыми разделами Р. являются радиолокация и радионавигация. Радиолокация, основанная на приёме радиоволн, отражённых от объекта (цели), возникла в 30-х гг. (Ю. Б. Кобзарев, Д. А. Рожанский и др.). Её методы позволяют определять местоположение удалённых предметов, их скорость и, в некоторых случаях, опознавать отражающий объект. Успешно развивается радиолокация планет (В. А. Котельников и др.). Радиолокация осуществляется при помощи наиболее коротких радиоволн (от метровых до миллиметровых). Метровые волны применяются главным образом для измерения больших расстояний, миллиметровые — для точного определения малых расстояний и обнаружения небольших объектов (в радиовысотомерах, в устройствах стыковки космических кораблей и т.п.). Радиолокация стимулировала быстрое развитие всех элементов, необходимых для генерации, излучения и приёма метровых и более коротких волн. Были созданы коаксиальные кабели и волноводы, коаксиальные и объёмные резонаторы, заменившие в этом диапазоне частот двухпроводные фидеры и резонансные колебательные контуры. Возникли остронаправленные антенны, в том числе многоэлементные, снабженные специальными отражателями или представляющие собой параболоиды, достигающие в диаметре нескольких десятков м. Специальные переключатели позволили использовать одну антенну одновременно для передачи зондирующих импульсов и для приёма импульсов, отражённых от цели. Для радиолокационных станций были разработаны специальные радиолампы — триоды с электродами плоской формы и коаксиальными выводами, приспособленные для работы с коаксиальными резонаторами, а также радиолампы, основанные на новых принципах: магнетроны, клистроны, лампы бегущей волны и лампы обратной волны. См. также Сверхвысоких частот техника.
Дальнейшее развитие в связи с потребностями радиолокации получили кристаллические детекторы, на основе которых были созданы полупроводниковые диоды. Их усовершенствование привело к появлению транзисторов, а впоследствии к разработке полупроводниковых микросхем (плёночных и интегральных), к созданию полупроводниковых параметрических усилителей и генераторов. Успехи полупроводниковой электроники обусловили вытеснение в большинстве областей Р. радиоламп полупроводниковыми элементами. Появились более совершенные электроннолучевые приборы, в том числе снабженные многоцветными экранами, что способствовало появлению цветного телевидения. Потребности радиолокации стимулировали развитие квантовой электроники и криогенной электроники (см. Криоэлектроника).
Радионавигация и близкая к ней радиогеодезия, прошедшие длинный путь развития (А. С. Попов, 1897; Н. Д. Папалекси, 1906, 1930; И. И. Ренгартен, 1912; Д. И. Мандельштам, 1930), — необходимые средства морской, воздушной и космической навигации, картографии и геодезические съёмки. Радиометоды позволяют определять положение и скорость объектов наблюдения с наивысшей точностью (погрешность в ряде случаев не превышает миллионной или даже стомиллионной доли измеряемой величины). Различают пассивные методы радионавигации, когда на подвижном объекте имеются лишь устройства, принимающие сигналы опорных наземных радиостанций, и активные, использующие радиолокацию. В практику вошли преимущественно пассивные и комбинированные радионавигационные системы. Однако, например, посадка космических аппаратов на Луну и планеты Солнечной системы обеспечивается автономными активными системами, получающими с Земли лишь исходные команды (см. Телемеханика).
Современная Р. характеризуется проникновением практически во все области человеческой деятельности. Радиосвязь при помощи обычного и быстродействующего буквопечатающего телеграфирования, радиотелефонная связь и передача изображений, чертежей, рисунков, газетных матриц, факсимиле стали доступными при любых расстояниях. Развитие космических исследований потребовало обеспечения надёжной радиосвязи с искусственными спутниками Земли (ИСЗ) и автоматическими космическими аппаратами, направленными к планетам или находящимися на их поверхности, передачи научной информации и изображений на Землю и передачи команд для управления этими аппаратами. Общеизвестно значение Р. в обеспечении космических полётов человека. С другой стороны, ИСЗ сами входят в состав линий связи в качестве ретрансляционных станций для осуществления надёжной связи между удалёнными пунктами, для передачи телевизионных программ, сигналов точного времени и т.п. (см. Космическая связь). Ввиду того, что ультракороткие волны плохо огибают земную поверхность, для передачи телевизионных изображений и для дальней связи используются радиорелейные линии, специальные высокочастотные кабельные линии и цифровые ретрансляторы (репитеры), в том числе установленные на ИСЗ.
Методы Р. лежат в основе действия многих систем автоматического управления, регулирования автоматического и обработки информации. Сложный комплекс элементов Р. представляют собой ЭВМ, совершенствующиеся вместе с развитием элементной базы Р.
Р. широко применяется в промышленности и народном хозяйстве. Высокочастотный нагрев используется для плавки особо чистых металлов в условиях вакуума и в атмосфере инертных газов, а также с успехом применяется для закалки поверхностей стальных деталей, для сушки древесины, керамики и зерна, для консервирования и приготовления пищи, в медицинских целях и т.д.
Р. тесно переплелась с различными областями науки. Примером может служить радиометеорология, изучающая влияние метеорологических процессов (движение облаков, выпадение осадков и т.п.) на распространение радиоволн и применяющая методы Р., в частности радиолокацию, для метеорологических исследований. Первым радиометеорологическим прибором был грозоотметчик Попова. При помощи этого прибора Попов изучал явления, сопровождающие грозы, чем, по существу, положил начало радиометеорологии.
Исследования атмосферных радиопомех привели к возникновению радиоастрономии (К. Янский, США, 1931), которая располагает средствами наблюдения небесных объектов на расстояниях, недоступных оптическими телескопам. Радиотелескопы сделали возможным открытие пульсаров, подробное исследование невидимого ядра нашей Галактики, квазаров, солнечной короны, поверхности Солнца и др.
Радиотехнические методы и устройства применяются при создании приборов и устройств для научных исследований. Ускорители заряженных частиц представляют собой, по существу, мощные генераторы радиочастотных колебаний с блоками модуляции, линиями передачи и специальными резонаторами, в которых происходит процесс ускорения частиц. Большая часть установок для исследования элементарных частиц и космических лучей представляет собой сложные радиотехнические схемы и блоки, позволяющие идентифицировать частицы по наблюдаемым результатам их взаимодействия с веществом. Сложные системы обработки данных, зачастую содержащие ЭВМ, позволяют вычислять энергию, заряд, массу и др. характеристики частиц. Методы изотопного анализа и магнитометрии, опирающиеся на Р., используются в археологии для объективного измерения возраста археологических объектов. Радиоспектроскопы различного типа, в том числе для исследований электронного, ядерного и квадрупольного резонансов, являются радиотехническими приборами, применяемыми в физике, химии и биологии при определении характеристик атомных ядер, атомов и молекул, при изучении химических реакций и биологических процессов (см. Радиоспектроскопия).
На основе развития Р. возникли электроакустика, изучающая и реализующая практические процессы преобразования звука в электрические колебания и обратно, различные системы звукозаписи и воспроизведения (магнитная и оптическая запись звука), а также системы, использующие ультразвук в технике (ультразвуковая связь под водой, обработка материалов, очистка изделий), медицине и т.п. Аппаратура, применяемая в ультразвуковой технике, является, по существу, радиоаппаратурой (генераторы, преобразователи, усилители и т.п.)
Р. породила мощную радиопромышленность, выпускающую радиоприёмники и телевизоры массового применения, связные, радиовещательные и телевизионные станции, аппаратуру магистральных линий связи, промышленное и научное радиооборудование, радиодетали и т.п.
Большую роль в развитии Р. играет деятельность международных и межгосударственных радиотехнических союзов и обществ, издание научных периодических журналов. Международный научный радиосоюз (МНРС) — один из старейших научных союзов; он объединяет ведущие научные организации многих стран. Сов. учёные активно участвуют в работе союза с 1957. МНРС каждые три года проводит Генеральные ассамблеи, подводящие итоги развития Р. и формулирующие её новые актуальные задачи. МНРС также систематически проводит тематические симпозиумы. Важнейшие межгосударственные организации, регламентирующие деятельность стран-участниц в области радиосвязи и радиовещания, — Международный консультативный комитет по радио (МККР) и Международная комиссия по распределению радиочастот (МКРЧ), в их работе активно участвует Сов. Союз.
Массовая организация в области Р. в СССР — Научно-техническое общество радиотехники, электроники и связи им. А. С. Попова, секции и местные организации которого работают во многих городах всех союзных республик. Из зарубежных радиотехнических обществ наиболее известен институт инженеров в области электроники и электротехники (IEEE; США). В СССР регулярно издаются общесоюзные журналы «Радиотехника и электроника», «Радиотехника», «Радио». За рубежом вопросам Р. посвящены периодические издания: «IEEE Proceedings», «L'Onde Electrique», «QST», «Alta Frequenza», «Hochfrequenztechnik und Elektroakustik», «Wireless Engeneer» и др.

Информация взята из сайта http://www.cultinfo.ru