КВ мобильные/стационарные
ANALOG
IC-F8101
IC-F7000
IC-78

Цены и наличие товара Вы можете уточнить здесь

 

ICOM IC-F8101

IC-F8101

 
 

MIL-STD 810IP54

Описание

Новая модель профессиональной коротковолновой радиостанции ICOM IC-F8101 специально разработана для сверхдальней КВ радиосвязи и помимо преимуществ, присущих предыдущим моделям радиостанций ICOM IC-78, IC-F7000 и IC-M802, отличается расширенным набором функций.

Три варианта исполнения:

с неотделяемой панелью управления, с отделяемой панелью управления и с панелью управления, совмещенной с ручным микрофоном.

Работа на передачу в полном нагрузочном цикле

в речевом режиме с выходной мощностью 125 Вт при невентилируемой конструкции. В режиме передачи данных обеспечивается 25% нагрузочный цикл (но не более 5 минут непрерывной работы), а при подключенном внешнем блоке вентиляторов CFU-F8100, возможна работа с полной нагрузкой.

Система избирательного вызова Selcall,

использующая CCIR493, 4- или 6-значные адресные коды ID и обеспечивающая возможность персональных и групповых вызовов, обмена сообщениями и данными о местоположении, а также отправки аварийного вызова и тестирования каналов и удаленного отключения (блокирования) радиостанции.

Система ALE,

автоматически выбирающая наиболее качественный канал и устанавливающая линию связи. Система соответствует Федеральному стандарту FED-STD-1045A . Совместима с основными требованиями военного стандарта MIL-STD 188-141B, более известного как стандарт ALE. Система обеспечивает возможность персональных вызовов, автоматической отправки зондирующего сигнала для проверки условий распространения радиоволн, а также обмена текстовыми сообщениями в автоматическом режиме

Функция улучшения качества речевого сигнала

при наличии шумов, действующая автоматически и позволяющая снизить требования к квалификации оператора.

Шумоподавители трех типов,

выполняющие свои функции соответственно в речевом режиме, в режиме вызова и в режиме S-метра.

Цифровой процессор сигналов DSP - последние технологии DSP улучшают и качество передачи и характеристики приемника.

Новые модели мобильных антенн с автоматической настройкой.

GPS приемник - при подключении внешнего приемника GPS/GLONASS, позволяет отправлять текущие координаты другим станциям и показывает информацию о местоположении, времени и высоте на дисплее.

Корпус выполнен в соответствии с международным военным стандартом MIL-STD 810

Дополнительный USB разъем для подключения компьютера.

Характеристики

Основные

 

IC-F8101

Диапазон частотПрием 0.5–29.9999МГц
Передача 1.6–29.9999МГц
Количество каналов 500 каналов
Тип излученияАвстралийская версия J3E, A3E (только RX)
Экспортная/США версия J3E, A3E, A1A, F1B, J2B
Требуемый источник питания 13.8V DC Отрицательное заземление
10.8–15.6V (Австралийская версия)
11.73–15.87V (Export/USA версия)
Потребляемый токПрием Менее 3A (Макс. аудио), 1.0A (Режим ожидания)
Передача Менее 28A (Максимальный выход)
Размеры (Ш×В×Т)
(без учета выступающих частей)
174×62×259 мм;
6.85×2.44×10.2  
Вес (приблиз.) 3.9кг; 8.6lb

Передатчик

 

IC-F8101

Выходная мощностьАвстралийская версия J3E: 100, 50, 10Вт PEP (типичный)
Экспортная/США версия J3E/A1A: 125, 50, 10Вт PEP (типичный)
A3E: 30, 12.5, 3W (типичный)
F1B/J2B: 75, 50, 10Вт PEP (типичный)
Побочное излучения 64дБ ниже типичного PEP

Приемник

 

IC-F8101

Чувствительность
(при 10дБ S/N)
J3E
(Pre-amp. ON)
0.5–1.5999МГц: 14dBмкВ
1.6–29.9999МГц: -14dBмкВ
A3E 0.5–1.5999МГц: 22dBмкВ
1.6–29.9999МГц: 6dBмкВ
Чувствительность шумоподавленияJ3E
(при 13.5МГц)
Порог: Менее +20dBмкВ
Закрыт: Менее +90dBмкВ
A3E
(при 1.000МГц)
Порог: Менее +30dBмкВ
Закрыт: Менее +110dBмкВ
Ложные ответы More than 70дБ
Аудио выходная мощность 4.0Вт на 10% искажений при нагрузке 4 Ом

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.
Tested to IC-F8101, AD-119, CFU-F8100 and MB-126.

СтандартMIL-810 G
Method, Proc.
Нижний предел давления при хранении
500.5 I
Нижний предел давления при использовании
500.5 II
Максимальная температура хранения
501.5 I
Максимальная температура эксплуатации
501.5 II
Минимальная температура хранения
502.5 I
Минимальная температура эксплуатации
502.5 II
Тепловой удар
503.5 I-C
Солнечное излучение
505.5 I
Защита от дождя
506.5 I
Соляной туман
509.5
Пылезащита
510.5 I
Колебания
514.6 I
Противоударность
516.6 I

Также встречается эквивалент MIL-STD-810 -C, -D, -E и -F.

Тесты проводились на IC-F8101, AD-119 и CFU-F8100.

Стандартная защита
Пыль и Вода
IP54 (Пылезащита и водонепроницаемость)

Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Разделительный комплект

RMK-6

RMK-6

     

Разделительные кабели

OPC-607, OPC-608

OPC-607

(3м; 9.8ft)
OPC-607, OPC-608

OPC-608

(8м; 26.2ft)
OPC-609

OPC-609

(1.9м; 6.2ft)
OPC-726

OPC-726

(5m; 16.4ft)

Монтажный кронштейн

MB-126

MB-126

     

Модуль фентилятора

CFU-F8100

CFU-F8100

     

Автоматический тюнер антенны

AT-140

AT-140

     

Кабель управляющего тюнера

OPC-2309

OPC-2309

Для использования с AT-140.
     

Автоматически настраиваемые антенны

AH-760

AH-760

AH-740

AH-740

   

GPS/MODEM переходник

OPC-2308

OPC-2308

     

Дистанционный микрофон

HM-192

HM-192

     

Ручной микрофон

HM-193

HM-193

     

Внешние динамики

SP-30

SP-30

SP-35

SP-35

2м кабель
SP-35L

SP-35L

6м кабель
 

 

ICOM IC-F7000

IC-F7000

 
 

MIL-STD 810

Описание

Расширенные возможности селективного вызова и ALE существенно упрощают КВ коммуникации!

IC-F7000 – это мобильный наземный КВ трансивер разработанный специально для установления дальних связей в КВ диапазоне. В большинстве случаев, установление таких радио связей требует высокого мастерства оператора, однако использование с IC-F7000, обладающего целым спектром превосходных функций позволяет существенно упростить установление КВ LMR соединений! 

Селективные вызовы

Используется уникальная адресация вызова, аналогичная телефонным номерам, которая позволяет размещать непосредственные вызовы необходимых корреспондентов или групп. Полная совместимость с коммуникационным оборудованием других производителей. 

Функция ALE (Автоматическая установка соединения) 

Эта функция осуществляет проверку качества прохождения сигнала на различных частотах и , оценивая уровень ответного сигнала, выбирает рабочие частоты максимально пригодные для наиболее качественной передачи сигналов. 

Универсальная конфигурация

Контроллера и громкоговоритель в трансивере IC-F7000 отделены от основного (ВЧ) блока. Кабель удлинения 6 м подключается к панели управления. Основной блок всего 72 мм по высоте, так что для установки IC-F7000практически не существует ограничений. Прилагаемый ручной микрофон HM-146 позволяет вам управлять практически всеми функциями вашего оборудования.

Другие опции 

  • Большой точечно-матричный ЖК-дисплей
  • 25 Вт излучаемой мощности на КВ
  • Значительное количество каналов
  • Приемник диапазона общего перекрытия
  • Автоматически согласуемая антенна
  • Цифровая обработка сигнала (DSP)
  • Подключение GPS устройств (NMEA0183 версии 3.01)
  • Подключение внешнего опорного генератора для сверхточной настройки. 
    Подавление речи, вызова и показаний S-метра.Опциональный антенный тюнер AT-140 совместно с антенной AH-2b.

Характеристики

Основные

 

IC-F7000

Диапазон частотRx 0.5–29.999МГц (непрерывный)
Tx 1.6–29.999МГц*
* Некоторые диапазоны частот не гарантируется
Количество каналов 500 каналов
(В том числе 100 ALE каналов)
Тип излучени J3E (USB, LSB), J2B (AFSK), F1B (FSK), A1A (CW), A3E (AM)
* J3E и A3E по умолчанию только для Австралийской версии
Требуемый источник питания 13.8В DC (10.8–15.6V DC)
Потребляемый токTx 17/12A*1 
Rx Макс. 3.0A
Размеры
(без учета выступающих частей; Ш×В×Т)
Основной модуль 240×72×239 мм;
9.45×2.83×9.41
Модуль контроллера 150×50×51 мм;
5.91×1.97×2.01
Вес (приблиз.)Основной модуль 4.6кг; 10.1lb
Модуль контроллера 220г; 7.7oz

Передатчик

 

IC-F7000

Выходная мощностьАвсрталия 100/50/10Вт PEP
Основной 125/50/10Вт PEP (1.6–3.99МГц)
100/50/10Вт PEP (4–29.9МГц)
Побочное излучения –43дБ
–40дБ (Основаня версия в диапазоне 3.5–3.99МГц)

Приемник

 

IC-F7000

Чувствительность (при 20dB SINAD)J3E 25.1мкВ emf, 12.6 мкВ (0.5–1.59МГц)
1.0мкВ emf, 0.5мкВ (1.6–29.9МГц)
A3E 200мкВ emf, 100мкВ (0.5–1.59МГц)
Чувствительность шумоподавленияJ3E 10мкВ/32мВ (Порог/Закрыт; при 13.8МГц)
A3E 32мкВ/320мВ (Порог/Закрыт; при 1.0МГц)
AF выходная мощность
(на 5% искажений при нагрузке 8 Ом)
4.0 W

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 F
Method, Proc.
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4-3 I
Минимальная температура эксплуатации 502.4-3 II
Колебания 514.5 I
Противоударность 516.5 I


Также встречается эквивалент MIL STD 810 -C, -D и -E.
Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Антенный элемент

AH-2b

AH-2b

     

Складная дипольная антенна

AH-710

AH-710

     

Комплектующие антенны

MN-100

MN-100

MN-100L

MN-100L

   

Тюнер антенны

AT-130

AT-130

AT-140

AT-140

   

Экранированные кабеля

OPC-1286

OPC-1286

10м; 32.8ft
(Используйте для AT-140)
OPC-1287

OPC-1287

5м; 16.4ft
(Используйте для AT230)
   

Ручной микрофон

HM-155

HM-155

     

Настольный микрофон

SM-50

SM-50

Динамический микрофон
(Используйте для OPC-589)
     

Переходник микрофона

OPC-589

OPC-589

8-Pin коннектор микрофона
     

Внешний динамик

SP-25

SP-25

SP-35

SP-35

2м кабель
SP-35L

SP-35L

6м кабель
 

Дистанционный контроллер

RC-26

RC-26

     

Рекомендуемая опция

AT230

AT230

Автоматически настраиваемая антенна
     

 

ICOM IC-78

IC 78

 
 

 

 

Описание

Надежный инструмент КВ радиосвязи

IC-78 представляет собой высококлассный КВ трансивер. К его уникальным возможностям относятся 99 каналов памяти, высокое значение коэффициента сигнал/шум, прямой ввод номера канала, опции цифровых видов связи многое, многое другое, что обеспечивает простую эксплуатацию пользователем с любым уровнем квалификации. И все это в компактном и прочном корпусе, который с успехом может быть использован как в стационарной, так и мобильной конфигурации. 

Значительный уровень мощности

Трансивер IC-78 обеспечивает до 100 Вт излучаемой мощности, позволяя устанавливать радиосвязь на наиболее дальние расстояния. Цельный литой алюминиевый корпус и большой радиатор выходного каскада позволяет существенно снизить температуру нагревания устройства и обеспечить его стабильную работу при высоких рабочих нагрузках. Установка столь компактного оборудования (240 х 95 х 239 мм) не вызывает никаких затруднений. 

Простота эксплуатации

Трансивер снабжен большим ЖК-дисплеем и минимальным набором переключателей и регуляторов. Кнопки на передней панели не имеют вторичных функций – вы можете ввести значение частоты или номера канала непосредственно с 10-кнопочной панели. 

99 каналов и восьмисимвольные наименования

99 каналов памяти может быть использовано для хранения необходимых частот приема и передачи, вида излучения, значения полосы фильтра, а также восьмисимольного наименования. Вы можете ввести наименование канала с 10-кнопочной панели. Кроме этого имеется возможность использования одного канала вызова для хранения наиболее часто используемой или наиболее важной частоты. Для чего предусмотрена соответствующая кнопка на передней панели. 

Большой громкоговоритель на передней панели

Благодаря громкоговорителю передней панели принимаемый сигнал направлен на оператора, что обеспечивает четкое его восприятие. Вам не нужно больше крутить ручку громкости и пытаться разобрать необходимую информацию. 

Высокая стабильность частоты. При установке опционального высокостабильного кварцевого генератора CR-338 стабильность частоты повышается до ±0.5 ppm. 

Работа в режиме VFO. Для использования непрерывного спектра частот в трансивере предусмотрена опция работы в режиме VFO (в зависимости от версий). Это позволяет без труда осуществлять поиск необходимых сигналов в пределах необходимого участка частот, например, вещательных станций КВ диапазона.

Прочие функции 

  • Подавитель помех импульсного типа с регулировкой уровня подавления.
  • Предусилитель и аттенюатор для обеспечения более комфортного приема слабых и мощных сигналов.
  • Регулятор порога шумоподавителя/ ВЧ усиления приемника с опцией программирования его функций в режиме установок.
  • Встроенный микрофонный компрессор, увеличивающий среднюю мощность сигнала в телефонных режимах.
  •  Встроенный электронный CW ключ
  • Широкий спектр функций сканирования
  • Функция смещения полосы ПЧ для подавления помех
  • Встроенная схема управлению антенными тюнерами различных моделей
  • Ручной микрофон, поставляемый в комплекте.
  • Функция VOX и многое, многое другое

Характеристики

 

IC-78

Диапазон частотTx 1.6-29.9999 МГц
(Гарантированый : 0.5-29.9999)
Rx 0.03-29.9999 МГц
Требуемый источник питания 13.8В DC ±15% 
Размеры (Ш×В×Т)
(без учета выступающих частей)
240×95×239 мм
9.45×3.74×9.41
Вес (приблиз.) 3.8кг; 8.4lb
Потребляемый ток (приблиз.)Передача 20A при макс. энергии
Макс. аудио выход 2.0A
Чувствительность 
(при 10дБ S/N; 1.8–29.999МГц)
SSB, CW, RTTY 0.16мкВ
AM 2.0мкВ
СелективностьSSB, CW, RTTY 2.1кГц/-6дБ
4.5кГц/-60дБ
AM 6.0кГц/-6дБ
20кГц/-60дБ
Выходная мощность аудио (10% искаж./ 4Ом нагрузке) 2.0Вт (10% иск. / 8Ом нагр)
Выходная мощность (PEP)
(выходная мощность отличается в зависимости от версии)
SSB, CW, RTTY 2-100Вт
AM 2-35Вт


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Антенный элемент

AH-2b

AH-2b

(Используйте для AH-4)
     

Сворачиваемая дипольная антенна

AH-710

AH-710

     

Комплектующие антенны

MN-100L

MN-100L

MN-100

MN-100

   

Тюнеры

AH-4

AH-4

(только для любительских диапазонов)
AH-130

AT-130

AH-140

AT-140

 

Автоматически настраиваемые антенны

AH-740

AH-740

Охватывает 2.5-30МГц (любительского диапазона). OPC-2321 не требуется.
AH-5NV

AH-5NV

Стекловолоконный антенный кабель для использования с AH-740.Охватывает 2.2–30МГц (любительского диапазона) с AH-740.
   

Экранированные сигнальные кабели


OPC-566

(Используйте для AT-130)
OPC-1147/N

OPC-1147/N

10м; 32.8ft
(Используйте для AT-140)
OPC-2321

OPC-2321

для AH-740
 

Микрофон

HM-36

HM-36

     

Настольный микрофон

SM-50

SM-50

Динамический микрофон
SM-30

SM-30

Электретный микрофон
SM-27

SM-27

Электретный микрофон
 

Внешние динамики


SP-21

SP-23

SP-23

   

Ручка для переноски

MB-23

MB-23

     

CI-V Конвертер

CT-17

CT-17

     

455kHZ фильтр

FL-52A: 500Hz/–6дБ

FL-52A: 500Hz/–6дБ
FL-53A: 250Hz/–6дБ
FL-222: 1.8кГц/–6дБ
FL-257: 3.3кГц/–6дБ

     

DSP Модуль

UT-106

UT-106

DSP Модуль 
Обеспечивает возможность DSP AF, такую как шумоподавление и автоматическая функция метки.
     

HIGH STABILITY CRYSTAL UNIT

CR-338

CR-338

HIGH STABILITY CRYSTAL UNIT 
Обеспечивает повышенную стабильность частоты. Стабильность частоты: ±0.5ppm
     

Как и куда распространяются радиоволны
Чем длиннее, тем дальше

Каждый раз, когда вы беретесь за ручку настройки радиоприемника и отправляетесь в путешествие по эфиру, перед вами открывается удивительный мир странствий, интересных и совсем не опасных приключений. Единственным их результатом будет расширение ваших знаний и кругозора.

Для обычного путешествия, как известно, нужны карта, компас (а лучше, спутниковый карманный приемник-навигатор - такие уже имеются), еще немного туристического снаряжения и элементарные знания и навыки. Для путешествия по эфиру, не выходя из дома, нужно все то же самое: снаряжение - радиоприемник, карта и "компас", справочник по радиостанциям мира и, конечно, знания и навыки. Как раз то, о чем мы сегодня собираемся поговорить.

Бесполезно искать ночью иголку в стоге сена, как бесполезно днем, находясь на территории России, искать в эфире американские радиостанции на средних волнах, хотя найти их можно ночью и днем. Итак, все наше многословие свелось к одному: вращая ручку настройки приемника, полезно хотя бы немного знать о распространении радиоволн на Земле.

Последней фразой я хотел подчеркнуть, что в Космосе все гораздо проще. Радиоволны, как и световые, и другие электромагнитные волны, распространяются прямолинейно. Они стараются это делать и на Земле, но она-то, как справедливо заметили еще средневековые ученые, круглая, и дальше горизонта на ней ничего не видно! Какой же смелостью надо было обладать Колумбу, а затем и Магеллану, чтобы экспериментально, собственным путешествием доказать сферичность Земли!

Трудно сравнивать, но изрядной смелостью обладал и Маркони, когда не прошло и десятилетия после первых успешных опытов Генриха Герца, Оливера Лоджа и Александра Попова по передаче и приему радиоволн, а он уже поставил целью послать радиосигналы через Атлантический океан. Были натянуты гигантские по тем временам проволочные антенны, построены мощные передатчики. И такая связь между побережьями Англии и Канады была впервые осуществлена в 1903 г. Успех был огромен, хотя всего-то и принято было достоверно три телеграфных тире.

В те годы уже было экспериментально, т. е. методом проб и ошибок, установлено, что чем длиннее волна, тем дальше она распространяется. Первую трансатлантическую связь провели на сверхдлинных волнах. Отсюда и применение гигантских антенн - ведь длина волны первых примитивных радиопередатчиков прямо зависела от длины антенны. Кроме того, чтобы антенна эффективно излучала, ее длина должна быть хотя бы порядка четверти длины волны. Тогда же необходимо было объяснить факт зависимости дальности распространения от длины волны явлением дифракции. Упрощенно говоря, дифракция - это огибание волной препятствия, а препятствием является высота шарового сегмента Земли, разделяющего приемную и передающую радиостанции (рис. 16). От Санкт-Петербурга до Москвы, как известно, около 600 км. Расчет дает высоту шарового сегмента h около семи километров, следовательно, длинные, километровые волны распространяются на такие расстояния.


У читателя может возникнуть вопрос: а как определить длину волны? Прежде ее обозначали в метрах прямо на шкале приемника, а теперь все чаще в килогерцах и мегагерцах (соответствующих длине волны), а уж современные цифровые шкалы и подавно измеряют только частоту. Длина волны l и частота колебаний f радиопередатчика обратно пропорциональны и связаны через скорость распространения радиоволн - c, такую же, как и скорость света: l= c/f. Практически, чтобы узнать длину волны в километрах, надо 300 разделить на частоту в килогерцах. Например, московская длинноволновая радиостанция на частоте 171 кГц (бывшая имени Коминтерна) имеет длину волны около 1,75 км. Ее можно слушать почти на всей территории европейской части России круглосуточно. Увлечение длинными волнами на заре радиотехники породило великую эпоху Радиостроя, когда антенны становились все выше, а радиостанции все мощнее. В 30-е годы радиостанция им. Коминтерна была самой мощной в Европе, излучая до 500 кВт, и ее слушали на детекторные приемники в самых глухих и отдаленных деревнях.

Радиостанций становилось все больше, и они стали создавать помехи друг другу. Здесь надо заметить, что при передаче радиовещательной программы станция занимает в эфире не одну частоту, а целую полосу частот шириной до 20 кГц. В справочниках указывают центральную частоту этой полосы, называемую несущей частотой, или просто несущей. Именно эту частоту и генерирует высокочастотный, или, как его называют, задающий генератор передатчика. Затем его колебания усиливаются и модулируются колебаниями звуковых частот.

В 30-е годы было достигнуто соглашение - установить разнос частот радиостанций в 9 кГц. Оно соблюдается и поныне. Теперь легко сосчитать, что на длинных волнах, в участке, отведенном для радиовещания (примерно от 150 до 400 кГц), можно разместить не более двух с половиной десятков радиостанций.

Со временем стали строить средневолновые радиостанции - в этом диапазоне около 120 частотных каналов, но и дальность распространения меньше, поскольку длина волны короче ( вспомните про дифракцию). Поэтому один и тот же частотный канал стали отводить нескольким, достаточно удаленным друг от друга радиостанциям. В дневное время они не создавали помех друг другу. Иное дело ночью, дальность распространения длинных и средних волн намного возрастала и становились слышны радиостанции, удаленные на несколько тысяч километров. Резко возрастали и взаимные помехи. Отчего это?

Ученые уже имели рабочую гипотезу. Высказал ее Оливер Хевисайд, чудаковатый английский джентльмен, чопорный и безукоризнено одетый, когда появлялся на людях. Но делать он этого не любил, а любил работать по ночам в жарко натопленной комнате и с наглухо занавешенными окнами. Говорят, что когда его избрали действительным членом Королевского Общества (по-нашему - Академии наук) и пригласили на торжественную церемонию избрания (черные мантии, головные уборы с четырехугольным верхом), он не нашел гинеи (а такой символический взнос надо было уплатить) и просто не пошел на заседание! К чести общества надо сказать, что оно все-таки избрало Хевисайда не действительным, но почетным членом, при этом не требовалось ни его присутствия, ни гинеи.

Так в чем же состояла гипотеза?

3.2. Жизнь преподносит сюрпризы!

Пока шла драка за распределение частот на длинных и средних волнах, короткими никто не интересовался, они считались просто непригодными для дальней радиосвязи и за ненадобностью были отданы... радиолюбителям. А такие уже были в начале двадцатых годов. Ведь и радиосвязь, и наблюдение за сигналами радиостанций - это очень интересно! И вот, от радиолюбителей стали поступать сенсационные сообщения: с помощью простейших передатчиков мощностью в несколько ватт и примитивных приемников устанавливались связи на десятки тысяч километров! Такой феномен уже нельзя объяснить дифракцией.

Тут-то и вспомнили гипотезу Хевисайда: верхние слои атмосферы должны быть ионизированы солнечным излучением. Ионизированный газ (ионосфера) содержит много свободных электронов и может проводить электрический ток, а значит, должен отражать радиоволны. Скорые на подъем американцы соорудили импульсный передатчик, и в 1924 г. инженеры Брейт и Тьюв получили отражение от ионосферы при вертикальном зондировании и измерили время запаздывания отраженного импульса, а по нему вычислили высоту отражающего слоя.

Ионосферу долгое время называли слоем Хевисайда. Позднее Эпплтон, анализируя отраженные сигналы, обнаружил, что отражающих слоев несколько. Ему же мы обязаны и названиями слоев. В своих расчетах он обозначил вектор напряженности электрического поля, как это обычно и делается, буквой Е. Когда же понадобилось обозначить поле другого отражения, он выбрал следующую букву алфавита - F. Убедившись, что отражения идут от разных слоев, он решил, что и названия им готовы - Е и F, при этом имея в виду, что в дальнейшем могут быть открыты и другие слои, для которых пригодятся и предыдущие, и последующие буквы алфавита. Это предвидение вполне оправдалось. Теперь известно, что в летний полдень можно наблюдать, по крайней мере, четыре четко различимых слоя. Самый нижний, слой D на высоте около 70 км, существует только днем. Слой E на высоте 90...120 км существует круглосуточно, лишь ночью в нем уменьшается электронная концентрация (Солнце-то, причина ионизации, не светит!) и увеличивается высота. То же, но в меньшей степени, происходит и со слоем F, но он расположен значительно выше - 200...250 км. Днем он распадается на два слоя - F1 и F2.

Информация взята из сайта http://www.chipinfo.ru