ICOM IC-A14 / S, ICOM IC-A15 / S

IC-A14-S

 

IC-A1510-keypad
IC-A15SSimple key 

 IPX4MIL-STD 810

Описание

Проста эксплуатации, надежность, компактность и превосходный звук ICOM

Мощность аудио выхода 700 мВт

Радиостанции авиационного диапазона практически всегда используются в условиях повышенных шумов, так что отличное качество звучания и громкость аудио сигналов – залог успешной работы. Трансиверы серии IC-A14/S используют BTL усилители, которые позволяют увеличить уровень аудио мощности в два раза и обеспечивают успешную работу станции как в кабине пилота, так и вне ее. 

Полноценная кнопочная панель или упрощенная версия

Полноценная кнопочная панель IC-A14 позволяет вводить частоты каналов, а также выделить отдельную кнопку для установки аварийного канала 121.5 МГц. Трансивер IC-A14предусматривает ведение приема в NAV и WX каналах. А модель IC-A14S с упрощенной кнопочной панелью представляет собой идеальный коммуникационный инструмент для наземного авиационного персонала. 

Портативность, малый вес, надежный корпус

Трансиверы серии IC-A14S компактны (всего 120 мм в высоту), легки (350 г с аккумулятором BPN-232N), водонепроницаемы (эквивалентны стандарту IPX4) и при этом весьма надежны в работе в самых жестких условиях. 

Литиум-ионный аккумулятор большой мощности

Блок аккумуляторов емкостью 200mАч, BP-232N, обеспечивает до 18 часов рабочего времени трансивера IC-A14S (Передача:Прием:Ожидание = 5:5:90). В случае крайней необходимости предусмотрено использование корпуса BP-261 для 6 щелочных батарей типа АА (LR6). 

200 каналов памяти

В трансивере предусмотрено 200 каналов памяти с наименованиями длиной до 8 символов. Для упрощения использования каналов они сгруппированы в 10 банков каналов памяти. 

Прочие функции

  • 5Вт выходной мощности (1.5 Вт - CW)
  • Функция самоконтроля позволяет вам прослушивать ваш собственный сигнал через авиационную гарнитуру
  • Подсветка ЖК-дисплея в течение время суток
  • Функция автоматического ограничения шумов (ANL)
  • Сигнализация разряда аккумуляторов
  • Регулируемый уровень микрофонного усиления
  • BNC разъем подключения антенны.

Характеристики

Основные

 

IC-A15

IC-A15S

Диапазон частот
118.000–136.975МГц (COM)
Количество каналов памяти 200 каналов 
с 10 банками
100 каналов
Интервал каналов
25кГц
Требуемый источник питания
7.4В DC (Icom аккумуляторная батарея)
Потребляемый токTx
1.5A
RxРежим ожидания
50мА
Макс. аудио
500мА
Размеры (Ш×В×Т)
(без учета выступающих частей)
53×120×36.9 мм
Вес
350г
(с антенной и BP-232N)
Диапазон рабочих температур
от –20°C до +55°C
Стабильность частоты
±5ppm

Передатчик

 

IC-A15

IC-A15S

Выходная мощность
5.0/1.5Вт (PEP/CW)
Импеданс микрофона
3-conductor 2.5 (d) мм
(1/10”)/ 150Ом

Приемник

 

IC-A15

IC-A15S

Чувствительность
–3dBμ
(при 12дБ SINAD с CCITT)
Селективность
6дБ (более 7.5кГц)
60дБ (менее 25кГц)
Внеполосовой прием
Более 70дБ
Аудио выходная мощность
(на 10% искажений с нагрузкой 8Ом, 30% модуляция)
Встроенный динамик Более 700мВт
Внешний динамик Более 500мВт

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 F
Method, Proc.
Нижний предел давления при хранении 500.4 I
Нижний предел давления при использовании 500.4 II
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4-3 I
Минимальная температура эксплуатации 502.4-3 II
Тепловой удар 503.4 I
Солнечное излучение 505.4 I
Защита от дождя 506.4 I
Пылезащита 510.4 I
Колебания 514.5 I
Противоударность 516.5 I

Также встречается эквивалент MIL STD 810 -C, -D и -E.

Стандартная защита
Вода IPX4(Водостойкая защита)


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Батареи

BP-230N

BP-230N

(Li-Ion)
7.4В/950мАч (min.),
980мАч
BP-232N

BP-232N

(Li-Ion)
7.4В/1900мАч
(min.),
2000мАч

 

 

Футляр для аккумуляторов

BP-261BP-261

AA (LR6)×6 щелочных элементов

 

   

Зарядки

BC-119N

BC-119N

Быстрое зарядное устройство (требуется AD-106)
BC-119N

BC-121N

Быстрое 6-ти местное зарядное
(требуется AD-106)
BC-160

BC-160

Быстрое зарядное устройство
BC-171

BC-171

Регулярное зарядное устройство
BC-179

BC-179

Зарядное устройство батареи
     

Адаптер переменного/постоянного тока

BC-145S

BC-145S

16В/1A (Используйте для BC-119N)
BC-147S

BC-147S

12В/200мА
(Используйте для BC-171 or BC-179)
BC-157S

BC-157S

12В/6.6A
(Используйте для BC-121N)
BC-123S

BC-123S

12В/1A
(Используйте для BC-160)

Адаптер зарядного устройства

AD-106

AD-106

(Используйте для BC-119N/BC-121N)
     

Кабели постоянного тока

OPC-515LOPC-515L

(Используйте для BC-119N)
OPC-656

OPC-656

(Используйте для BC-121N)
   

Автомобильная зарядка

CP-22

CP-22

(Используйте для BC-179)

 

     

Микрофон

HM-173

HM-173

     

Кабель адаптера гарнитуры

OPC-499

OPC-499

     

Клипса

MB-94

MB-94

 

   

Крепления на ремень

MB-96F

MB-96F

MB-96FL

MB-96FL

Удлиненного типа
   

Антенна

FA-B02AR

FA-B02AR

 

 

ICOM IC-A24 / IC-A24 E, ICOM IC-A6 / IC-A6E

IC-A24

 

IC-A24ENAV channelNAV channel
IC-A6ENAV channel

 8.33кГц ReadyMIL-STD 810

 

Описание

Авиационные радиостанции IC-А6 и IC-А24 отличаются повышенной надежностью и множеством дополнительных функций. Радиостанция IC-A24 имеет функцию VOR-навигации, которая показывает направление от или к VOR-станции. Индикатор “Отклонения Курса” (Course Deviation Indicator) показывает отклонение между реальным курсом полета и расчетным. В режиме CDI функция “Автоматическая Система Настройки Направления” (Auto Bearing Set System) позволяет одним нажатием центрировать полетный курс. В навигационном режиме возможно применение полудуплексной связи.

Хорошо обозначенные кнопки и увеличенное расстояние между ними позволяют легко работать с радиостанцией, даже когда руки находятся в перчатках. Удобный высококонтрастный дисплей с легко читаемой информацией с широким углом обзора. Дисплей и кнопки подсвечиваются в ночное время.

Радиостанция имеет компактные размеры 54x129,3x35,5 мм, легко крепится на поясе или помещается в сумке. Водостойкость конструкции радиостанции соответствует классу IPX4 и позволяет эксплуатировать ее в условиях дождя.

Регулировка громкости и выбор канала могут осуществляться как вращающейся ручкой настройки на верхней панели радиостанции, так и с помощью кнопок Up/Down на передней панели радиостанции. Уровень звука и номер канала отражаются на дисплее радиостанции во время регулировки и настройки.

Имеется гнездо для подключения внешнего источника питания.

Радиостанция может программироваться с компьютера с установленной программой CS-A24, возможно также клонирование установок радиостанции.

Имеется функция SIDETONE, которая позволяет с помощью стандартной гарнитуры или наушника прослушивать передаваемый сигнал.

Радиостанция имеет:

  • 200 каналов памяти (20 каналов x 10 банков), каждому из которых можно присвоить буквенно-цифровое обозначение длиной до 6 символов; 
  • вызов аварийного канала 121,5 МГц одним нажатием;
  • различные типы аккумуляторов большой емкости;
  • запрограммированные каналы погоды;
  • встроенную функцию ANL (Auto Noise Limiter) для уменьшения шума.

Характеристики

Основные

 

IC-A24E

IC-A6E

Диапазон частотTx 118.000–136.9917МГц
Rx 108.000–136.9917МГц 118.000–136.9917МГц
Количество каналов памяти 200к (20к × 10 банков)
Интервал каналов
(зависит от версии)
8.33/25KHz or 25кГц
Требуемый источник питания 7.2В DC (Аккумуляторная батарея),
11.0В DC (Внешний DC штекер)
Потребляемый токTx 1.8A (25кГц/8.33кГц версия) 
1.5A (25кГц версия)
RxРежим ожидания 70мА
Макс. аудио 500мА (25кГц/8.33кГц версия)
300мА (25кГц версия)
Размеры (Ш×В×Т)
(без учета выступающих частей)
54×129.3×35.5 мм
Вес 430г
(с BP-210N и антенной)
Диапазон рабочих температур от –20°C до +55°C
Стабильность частоты ±1 ppm (25кГц/8.33кГц версия)
±5 ppm (25кГц версия)

Передатчик

 

IC-A24E

IC-A6E

Выходная мощность (PEP/Carrier) 5.0/1.5Вт (25кГц/8.33кГц версия)
3.6/1.0Вт (25кГц версия)
Импеданс микрофона 100kОм

Приемник

 

IC-A24E

IC- A6E

Чувствительность

COM (12дБ SINAD)
1мкВ (25кГц/8.33кГц версия)
0.71мкВ (25кГц версия)

NAV (6дБ S/N)
1мкВ (25кГц/8.33кГц версия)
0.71мкВ (25кГц версия)

Селективность 6дБ
2.778/7.5кГц (8.33кГц/25кГц)
60дБ
7.37/25кГц (8.33кГц/25кГц)
Внеполосовой прием 70дБ
Аудио выходная мощность
(на 10% искажений при 8Ом)
470мВт (8.33кГц/25кГц версия)
500мВт (25кГц версия)

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 F
Method, Proc.
Нижний предел давления при хранении 500.4 I
Нижний предел давления при использовании 500.4 II
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4 I
Минимальная температура эксплуатации 502.4 II
Тепловой удар 503.4 I
Солнечное излучение 505.4 I
Соляной туман 509.4
Пылезащита 510.4 I
Колебания 514.5 I
Противоударность 516.5 I


Также встречается эквивалент MIL STD 810 -C, -D и -E.
Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Батарея

BP-210N

BP-210N

Ni-MH: 7.2 В/1500 мАч (min.)/1650 мАч
     

Футляр для аккумуляторов

BP-208N

BP-208N

AA (LR6)×6 ячеек
     

Зарядное устройство

BC-167S

BC-167S

     

Зарядки

BC-119N

BC-119N

Быстрое зарядное устройство
BC-144N

BC-144N

Быстрое зарядное устройство
BC-121N

BC-121N

Быстрое мультизарядное устройство
 

Адаптер переменного/постоянного тока

BC-145S

BC-145S

(Используйте для BC-119N/BC-144N)
BC-157S

BC-157S

(Используйте для BC-121N)
   

Адаптер зарядного устройства

AD-101

AD-101

(Используйте для BC-119N/BC-121N)
     

Кабели постоянного тока

OPC-515L

OPC-515L

(Используйте для BC-119N)
OPC-656

OPC-656

(Используйте для BC-121N)
   

Автомобильная зарядка

CP-20

CP-20

     

Микрофон

HM-173

HM-173

     

Кабель адаптера гарнитуры

OPC-499

OPC-499

     

Клипсы

MB-86

MB-86

MB-103

MB-103

   

Крепления на ремень

MB-96F

MB-96F

(Используйте для MB-103)
MB-96N

MB-96N

MB-96FL

MB-96FL

Удлиненного типа
 

Чехол

LC-159

LC-159

     

Антенна

FA-B02AR

FA-B02AR

 

 

ICOM IC-A210 / IC-A210E

IC-A210-1

 

 

 MIL-STD 810

Описание

Инновационный трансивер авиационного диапазона

Большой светодиодный дисплей с высоким уровнем яркости
Трансивер IC-A210 снабжен большим дисплеем на основе органических светодиодных индикаторов (OLED). Дисплей на основе OLED самостоятельно обеспечивает световое излучение и обладает существенными преимуществами по яркости, четкости, контрастности изображения, а также углу обзора и времени отклика по отношению к традиционным дисплеям. Кроме этого, трансивер снабжен функцией автоматического затемнения, которая позволяет определить оптимальный уровень яркости для дневного и ночного режимов. 

Простота установки канала

Вы можете легко и просто установить любой канал памяти в трансивере IC-A210. Двух контактная кнопка со стрелками позволяет легко осуществлять переключение между основным и резервным рабочим каналом. Функция двойного приема позволяет вести прием в двух каналах одновременно. Кроме этого, функция автоматического стека позволяет хранить в памяти 10 последних использованных каналов и мгновенно устанавливать их при необходимости. 

Функция GPS памяти

При подключении внешнего GPS приемника, снабженного базой рабочих частот аэропортов, необходимая рабочая частота для связи с аэропортом может быть передана в трансивер IC-A210 при приближении к аэропорту.

Источник питания 12V/24V DC

Встроенный DC преобразователь напряжений позволяет использовать различные источники питания 12/24V (11.5 –27.5V). Таким образом, трансивер IC-A210 может быть установлен на борту практически во всех воздушных и наземных транспортных средств. 

Функции селекторной связи

Трансивер IC-A210 снабжен функцией селекторной связи с голосовой активизацией. Таким образом, у командира корабля имеется возможность разговора со вторым пилотом через гарнитуру. Трансивер также снабжен функциями регулировки уровня аудиосигнала и порога шумоподавителя. 

Простота установки

Трансивер IC-A210 может быть установлен в кабине пилота с помощью стандартных монтажных скоб, которые использовались с трансиверами IC-A200. В комплекте с трансивером поставляются два типа адаптеров задней панели для упрощенного подключения трансивера.

Другие функции 

  • Установка аварийной частоты 121.5 мГц нажатием единственной кнопки
  • Функция самоконтроля излучаемого сигнала в головных телефонах
  • Функция ANL (автоматического ограничения шумов) для подавления помех импульсного типа
  • Возможность дистанционного управления
  • Таймера тайм-аута
  • Программирование настроек с персонального компьютера
  • Блокировка ручки настройки и органов управления передней панели
  • Функция проверки шумоподавления

Характеристики

Основные

 

IC-A210E

Диапазон частот 118.000–136.975МГц
Интервал частоты 25кГц, 8.33кГц
Количество каналов памяти 10 регулярной памяти, 200 групп памяти, 
10 GPS, 10 Авто стек (история) памяти
Требуемый источник питания 13.8/27.5В DC
(отрицательное заземление)
Размеры (Ш×В×Т)
(без учета выступающих частей)
160×34×271 мм
Вес 1.0кг
Диапазон рабочих температур от –20°C до +55°C
Стабильность частоты ±1ppm (0°C до +40°C)

Передатчик

 

IC-A210E

Выходная мощность 6Вт типичный
Импеданс микрофона ---

Приемник

 

IC-A210E

Чувствительность (AM) –101dBm
12дБ SINAD
Селективность 8.33кГц интервал к. 6дБ ±2.8кГц
25кГц интервал к. 6дБ ±8.5кГц
Аудио выходная мощность
(на 10% искажений)
Встроенный динамик 5Вт при нагрузке 4Ом
Наушник 60мВт при нагрузке 500Ом

Применяемые военными США спецификации

IC-A210E был протестирован и принят соответственно требованиям MIL-STD и строгим экологическим стандарам.

СтандартMIL-810 F
Method, Proc.
Нижний предел давления при хранении 500.4 I
Нижний предел давления при использовании 500.4 II
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4 I
Минимальная температура эксплуатации 502.4 II
Тепловой удар 503.4 I
Солнечное излучение 505.4 I
Колебания 514.5 I
Противоударность 516.5 I

Также встречается эквивалент MIL-STD-810-C, -D и -E.


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Монтажный кронштейн

MB-53

MB-53

     

Адаптер задней панели

MB-113

MB-113

     

Микрофон

HM-176

HM-176

 

 

ICOM IC-A110 / IC-A110EURO

IC-A110-1

 

 

 MIL-STD 810

Описание

Надежность и гибкость радиосвязи экипажа с землей

Выпуском трансивера IC-A110/EURO компания ICOM определила новый стандарт радиосвязи для наземных базовых станций, которые подразумевает надежность и гибкость функционирования в различных рабочих условиях. 

Возможность установки на любое транспортное средство. Предусмотрено питание трансивера от аккумулятора любого транспортного средства, как 12 В, так и 24 В. 

Мощный громкоговоритель на передней панели. 

Мощный громкоговоритель, расположенный на передней панели устройства, обеспечивает прямую передачу принимаемого сигнала и упрощает его восприятие. Кроме этого, вы можете дополнительно подключить внешний громкоговоритель мощностью до 10 Вт. 

Выбор режима навигации по частоте. 

Простое вращение ручки настройки может приводить к изменению наиболее часто используемых каналов или необходимых частот, в зависимости от вашего выбора. 

Наименования каналов памяти. 

Вы можете определить наименования для каждого канала памяти длиной до 7 символов, что существенно упрощает управление каналами. 

Функции самоконтроля. 

Передаваемые оператором сообщения и вызовы могут быть проконтролированы с помощью стандартной авиационной гарнитуры, которая эффективна даже в сложных рабочих условиях аэропорта. При использовании гарнитуры стандартного типа необходимо использования опционального устройства OPC-871. 

Удобные функции сканирования. 

Установка микрофона на крюк активизирует функцию автоматического сканирования. При снятии микрофона с крюка может быть установлен последний использованный канал или приоритетный канал, в зависимости от конфигурации. 

Функционирование в условиях пониженных температур. 

Специальный ЖК-дисплей предназначен для работы в условиях пониженных температур -30°C до +70°C. Полная функциональность и индикация сохраняется даже в более холодных условиях. 

Дополнительные функции 

  • В дополнении к стандартному шагу каналов 25 кГц , имеется дополнительная версия, удовлетворяющая новому стандарту шага каналов 8.33 кГц
  • Предусмотрены различные функции сканирования, включая VFO и приоритетного сканирования.
  • 99 каналов памяти
  • 36 Вт излучаемой мощности
  • Компактные габаритные размеры 150 х 50 х 180 идеально подходят для монтажа трансивера практически во всех видах транспортных средств.

Характеристики

Основные

 

IC-A110EURO

Диапазон частотTx: 118.000–136.975 МГц
Rx: 118.000–136.975 МГц
Количество каналов памяти 99к.
Интервал каналов 25кГц/8.33кГц
Требуемый источник питания 13.75В or 27.5В DC
(автоматический выбор)
Потребляемый токTx 5.0A Макс.
RxРежим ожидания 500мА
Макс. аудио 4.0A
Размеры (Ш×В×Т)
(без учета выступающих частей)
150×50×180 мм
Вес 1.5кг
Диапазон рабочих температур –20°C до +55°C
Стабильность частоты ±1ppm (0°C до +40°C)

Передатчик

 

IC-A110EURO

Выходная мощность 36/9Вт (PEP/Carrier)
Импеданс микрофона 600Ом

Приемник

 

IC-A110EURO

Чувствительность 5dBмкВ (12дБ SINAD)
Внеполосовой прием 70дБ
Аудио выходная мощность
(на 10% искажений)
10Вт при нагрузке 8 Ом
100мВт при нагрузке 500Ом

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 E 
Method, Proc.
Нижний предел давления при хранении 500.3 I
Нижний предел давления при использовании 500.3 II
Максимальная температура хранения 501.3 I
Максимальная температура эксплуатации 501.3 II
Минимальная температура хранения 502.3 I
Минимальная температура эксплуатации 502.3 II
Тепловой удар 503.3 I
Солнечное излучение 505.3 I
Защита от дождя 506.3 I
Соляной туман 509.3
Пылезащита 510.3 I
Колебания 514.4 I
Противоударность 516.4 I


Также встречается эквивалент MIL STD 810 -C и -D.
Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Микрофон

HM-161

HM-161

     

Адаптер для наушников

OPC-871

OPC-871

 

ICOM IC-A120

A120 HM 216

 

 

 

 

 

 

 

Описание

Icom IC-A120 — авиационная радиостанция высокой производительности с активным шумоподавлением и беспроводной связью Bluetooth. Полноматричный ЖК-дисплей позволяет добиться высокой четкости отображения буквенно-цифровых символов и значков. Программирование каналов памяти и другие настройки радиостанции авиационного диапазона можно осуществлять прямо с передней панели. В зависимости от настроек радиостанции эти функции могут быть ограничены.

Стационарная авиа радиостанция Icom IC-A120 может использоваться со сторонней беспроводной bluetooth-гарнитурой благодаря дополнительному модулю Bluetooth. Также с применением мини-гарнитуры Bluetooth доступна функция местного эффекта. Новая опция встроенного активного шумоподавления позволяет уменьшить фоновый шум при приеме-передаче сигналов.

Эта функция эффективна в чрезвычайно шумных условиях аэропорта. Автоматический ограничитель шума снижает уровень импульсного шума, например зажигания двигателя. Функции активного шумоподавления и автоматического ограничителя шума не могут быть использованы одновременно.

Характеристики:

  • Частоты: 118-137 МГц.
  • Модуляция: АМ.
  • Количество каналов: 200.
  • Мощность: 9/36 Вт.
  • Питание: 12 / 24 В (автоматический выбор).
  • Габаритные размеры: 160×45×193 мм.
  • Вес: 1,5 кг.

Комплектность поставки

  • Приемопередатчик.
  • Выносной микрофон.
  • Скоба крепления.
  • Инструкция пользователя.
  • Упаковка.

Характеристики

Категории Авиационные радиостанции
Диапазон частот 118-137 МГц
Интервал между каналами 25 кГц /8.33 кГц
Мощность 9/36 Вт
Количество каналов 200
Размеры 161 х 45 х 175 (мм)
Вес около 1.5 кг
Источник питания

Аксессуары

  1. Приемопередатчик.
  2. Выносной микрофон.
  3. Крепление.
  4. Инструкция пользователя.
  5. Упаковка.

 

ICOM IC-A220

ic a220

 

 

 

 

 

Описание

Icom IC-A220 одна из лучших бортовых радиостанций авиационного типа производства японской компании Icom.

В модельном ряду радиостанция пришла на смену предыдущей разработке - Icom IC-A210, привнося в конструкцию расширенные функциональные возможности и новейшие технологии компании.

Среди них стоит отметить: большой яркий дисплей, построенный по технологии OLED, которая, в сравнении с обычными TFT дисплеями обеспечивает более насыщенную контрастность, яркость, широкие углы обзора и пониженное энергопотребление.

Также заслуживают внимания такие опции как:

- возможность программирования радиостанции через ПК;

- преобразователь напряжения 12/24 V, благодаря которому Icom IC A220 можно подключать к борту практически любого авиасудна через стандартное крепление;

- опция автоматической регулировки яркости экрана повышает комфорт пилота при мониторинге приборной панели;

- интерком обеспечивает удобную многостороннюю связь между членами экипажа, а двойной мониторинг обеспечит наблюдение за двумя каналами одновременно.

Функция программирования каналов памяти даёт возможность записать до 9-ти часто используемых частот и включить защиту от перезаписи.

Простой интуитивный интерфейс позволит быстро освоиться с элементарным управлением рацией Icom IC A220, а при помощи двухпозиционной клавиши можно быстро переключатся между основным и запасным каналами.

Удобным нововведением является автоматическое запоминание последних 10-ти использованных каналов и при необходимости быстрая работа с ними. Лёгкому общению со вторым пилотом способствует функция селекторного общения с голосовой активацией (VOX) по гарнитуре.

 Icom ICA220 обеспечивает шумоподавитель с регулировкой порога повышения разборчивости аудио сигнала.

Функциональные возможности рации:

  • - GPS память при подключении внешнего приемника GPS (с авто передачей частоты аэропорта при сближении)
  • - Автоматический ограничитель импульсных шумов (ANL)
  • - Селекторная связь со вторым пилотом по гарнитуре
  • - Функция приёма метео сводки от службы NOAA
  • - Память на 10 последних использованных каналов
  • - Простой монтаж при помощи стандартных скоб
  • - Самоконтроль уровня сигнала в гарнитуре
  • - Мониторинг двух каналов одновременно
  • - Шумоподавитель с регулировкой уровня
  • - Проверка активности шумоподавления 
  • - Авто регулировка яркости дисплея
  • - Программирование рации через ПК
  • - Блокировка органов управления
  • - Большой, яркий OLED дисплей
  • - Частоты  118 - 136,975 МГц
  • - Дистанционное управление
  • - Простая установка канала
  • - Таймера разговора
  • - VFO сканер

Характеристики

Аварийная частота – 121.5 Гц

Диапазон частот – 118.000 – 136.975 Мгц

Мощность несущей – 8 Вт

Количество каналов – 20 , 50, 10 (GPS)

Рабочая температура - -20+50С

Шаг сетки частот – 25 кГц

Габариты – 160х34х271 мм

Вес – 1 кг

Чувствительность – 2 мкВ



Аксессуары

1. Приемопередатчик.

2. Скоба крепления.

3. Инструкция пользователя.

4. Упаковка.

Радиотехника
Радиотехника, наука об электромагнитных колебаниях и волнах радиодиапазона — о методах их генерации, усиления, излучения, приёма и об их использовании; отрасль техники, осуществляющая применение электромагнитных колебаний и волн радиодиапазона для передачи информации — в радиосвязи, радиовещании и телевидении, в радиолокации и радионавигации, при контроле и управлении машинами, механизмами и технологическими процессами, в разнообразных научных исследованиях и т.д. Радиодиапазон охватывает спектр электромагнитных волн (ЭВ) длиной от нескольких десятков тыс. км до десятых долей мм.
Развитие Р. тесно связано с достижениями в области радиофизики, электроники, физики полупроводников, электроакустики, теории колебаний, теории информации (см. Информации теория), и различных разделах математики, а также с прогрессом в технике высокочастотных измерений (см. Измерительная техника, Радиоизмерения), вакуумной и полупроводниковой технике (см. Полупроводниковая электроника), в производстве источников электропитания и др. В Р. входит ряд областей, главные из которых — генерирование электрических колебаний, усиление электрических колебаний, их преобразование, управление ими (см. Модуляция колебаний), антенная техника (см. Антенна, Излучение и приём радиоволн), распространение радиоволн в свободном пространстве, в различных средах (ионосфере, почве) и в направляющих системах (кабелях, волноводах), фильтрация электромагнитных колебаний, демодуляция, воспроизведение переданных сигналов (речи, музыки, изображений, телеграфных и иных знаков), контроль, управление и регулирование при помощи ЭВ и колебаний (посредством радиоэлектронных систем).
История Р. восходит к работам М. Фарадея, заложившего основы учения об электрическом и магнитном полях (1837—46). Фарадей высказал мысль о том, что распространение электрических и магнитных воздействий происходит с конечной скоростью и представляет собой волновой процесс. Эти идеи были развиты Дж. К. Максвеллом, математически описавшим (1864) известные электрические и магнитные явления системой уравнений, из которых следовала возможность существования электромагнитного поля, способного распространяться в пространстве в виде ЭВ, частным случаем которых являются световые волны.
ЭВ радиодиапазона (с длиной волны около 1 дм) были впервые получены и изучены Г. Герцем (1886—89), который осуществил их генерирование и излучение при помощи вибратора, возбуждаемого искровым разрядом (см. Герца вибратор). При помощи второго вибратора, в котором под действием принимаемой волны проскакивала искра, Герц регистрировал ЭВ. Герц показал, что эти волны способны отражаться, преломляться, интерферировать и поляризовываться подобно световым волнам, однако он не предвидел возможности применения ЭВ для передачи информации. Существенную роль в опытах Герца играло явление резонанса, подробно изученное В. Ф. К. Бьеркнесом (1891). Важнейшая формула для определения резонансной частоты колебательного контура при отсутствии затухания (идеальный контур) была получена ещё в 1853 У. Томсоном (Кельвином). Э. Бранли (Франция) обнаружил (1890) и изучил явление уменьшения сопротивления металлического порошка при воздействии на него электрических колебаний и восстановления исходного высокого сопротивления при встряхивании. О. Лодж (Великобритания) использовал это явление для индикации ЭВ при воспроизведении опытов Герца (1894); прибор в виде заполненной металлическими опилками стеклянной трубки с электродами на концах он назвал когерером.
А. С. Попов, развивая опыты Герца и стремясь решить задачу беспроволочной связи при помощи ЭВ, усовершенствовал когерер, применив для восстановления его сопротивления автоматическую систему, осуществлявшую встряхивание когерера после воздействия на него ЭВ. Автоматический когерер стал основой первого аппарата для обнаружения и регистрации сигналов (их приёма) в системе беспроволочной связи. Попов также обнаружил, что присоединение к когереру вертикального провода — антенны — приводит к увеличению чувствительности такого приёмного устройства. Свой первый в мире радиоприёмник Попов продемонстрировал в действии 25 апреля (7 мая) 1895 во время доклада на заседании физического отделения Русского физико-химического общества. Примерно год спустя опыты по использованию радиоволн для беспроволочной связи продемонстрировал Г. Маркони, причём его аппаратура в основных чертах совпадала с аппаратурой, разработанной Поповым.
Начальный период развития Р. — период создания простейших передающих и приёмных радиостанций, работавших на сравнительно коротких радиоволнах, — характеризовался применением сильно затухающих радиоволн — коротких волн, возбуждаемых вибратором Герца. Дальность радиосвязи постепенно увеличивалась благодаря переходу к более длинным волнам, возрастанию мощности передатчиков и размеров (высоты и числа проводов) антенны. Увеличению дальности способствовало и применение заземления или системы низко расположенных проводов («противовеса»). Дальность и избирательность (селективность) приёма также существенно увеличились благодаря переходу на слуховой (телефонный) приём с применением детектора (сотрудники Попова П. Н. Рыбкин и Д. С. Троицкий, 1899).
Следующий существенный шаг в развитии Р. сделал К. Ф. Браун, предложивший (1899—1900) разделить антенну и искровой разрядник. При этом разрядник помещался в замкнутом колебательном контуре, а антенна связывалась с этим контуром индуктивно, при помощи высокочастотного трансформатора. Схема Брауна позволяла излучать в пространство существенно большую часть энергии, запасённой в первичном колебательном контуре, однако значительная часть её возвращалась обратно из антенны в контур, возбуждая в нём новую искру, что приводило к потерям энергии. В 1906 М. Вин (Германия) предложил специальный разрядник, препятствовавший возврату энергии из антенны в колебательный контур. При этом колебания в антенне затухали слабо и почти вся энергия излучалась в виде радиоволн.
Дальнейшим шагом в развитии радиоустройств было применение незатухающих радиоволн, возбуждаемых дуговыми генераторами и машинными генераторами высокой частоты. Удачные образцы машин высокой частоты индукторного типа построил в 1912—34 В. П. Вологдин. При помощи машин Вологдина в 1925 впервые была осуществлена радиосвязь между Москвой и Нью-Йорком. В начале 20-х гг. О. В. Лосев применил для генерирования электромагнитных колебаний кристаллический детектор.
Коренные изменения во все области Р. внесло развитие и применение электронных ламп. В первом ламповом детекторе, предложенном Дж. А. Флемингом (1904), был использован эффект Эдисона — одностороннее прохождение электрического тока в вакууме от накалённой нити (катода) к металлической пластинке (аноду). Но этот детектор, как и приёмная трёхэлектродная лампа Л. де Фореста, уступал по чувствительности кристаллическому детектору, который широко применялся до середины 20-х гг. и вышел из употребления лишь после усовершенствования усилительных радиоламп. Ламповый генератор незатухающих колебаний был изобретён почти одновременно несколькими учёными. Приоритет (1913) принадлежит А. Мейснеру (Германия; см. Генераторная лампа). Существенный вклад в теорию и разработку электронных ламп и схем с их применением внесли М. В. Шулейкин, И. Г. Фрейман, М. А. Бонч-Бруевич, А. И. Берг, А. Л. Минц, Л. И. Мандельштам, Н. Д. Папалекси и др., а также Г. Баркгаузен и Г. Мёллер. Центром исследований в области приёмно-усилительных и генераторных радиоламп в СССР была Нижегородская радиолаборатория (1918—28), вошедшая в 1928 в состав Центральной радиолаборатории. Надёжный приём незатухающих радиоволн в условиях различных помех стал возможным после появления гетеродинного метода (см. Гетеродин). Однако существенным шагом в увеличении чувствительности радиоприёмников было появление схемы регенеративного, а затем супергетеродинного (см. Супергетеродинный радиоприёмник) приёма (Э. Х. Армстронг, 1913, 1918; Л. Леви, Франция, 1918). Теория радиоприёма разработана в трудах Армстронга, а также В. И. Сифорова и многих др.
Развитие Р. сопровождалось освоением различных диапазонов радиоволн. Период от изобретения радио до освоения дуговых и машинных генераторов был связан с постепенным увеличением длины радиоволн от нескольких дм до нескольких км, потому что удлинение радиоволн обеспечивало увеличение дальности и устойчивости радиосвязи как за счёт более благоприятных условий распространения радиоволн, так и вследствие одновременного увеличения излучаемой мощности. Применение радиоламп позволило эффективно генерировать радиоволны в диапазоне от сотен м до нескольких км.
В начале 20-х гг. наряду с радиотелеграфной связью возникло радиовещание. Увеличение количества связных и вещательных радиостанций и стремление к работе на длинных волнах привело к взаимным помехам, к «тесноте в эфире» и необходимости строгого соблюдения международных соглашений о распределении радиоволн (см. Регламент радиосвязи). Радиолюбители, для которых были выделены радиоволны короче 100 м (см. Радиолюбительская связь), обнаружили возможность связи на этих волнах на больших расстояниях при помощи маломощных радиопередатчиков. Исследование законов распространения радиоволн коротковолнового диапазона позволило применить их для связи и радиовещания. Были созданы специальные радиолампы КВ и УКВ (метрового) диапазонов, специальные схемы, а также антенны, предназначенные для этих диапазонов, и фидеры для соединения антенн с передатчиками и приёмниками. Для изучения законов распространения радиоволн много сделали Б. А. Введенский, А. Н. Щукин, В. А. Фок, А. Зоммерфельд и др. Современные радиовещание осуществляется на ультракоротких, коротких, средних и длинных волнах. В создании мощных радиовещательных станций и синхронных сетей СССР занимает ведущее место в мире (А. Л. Минц и др.). Важнейшее значение приобрело появление электронного телевидения, ставшего массовым в середине 20 в. Большой объём информации при передаче движущихся изображений может быть реализован только при помощи очень высокочастотных колебаний, соответствующих метровым и более коротким волнам. Помимо телевизионного вещания, телевизионная аппаратура применяется для наблюдения за процессами, протекающими в условиях, недоступных для человека (космос, большие глубины, зоны повышенной радиации и т.п.), а также в условиях малой освещённости (при астрономических наблюдениях, при наблюдениях в ночное время и т.п.).
Особыми разделами Р. являются радиолокация и радионавигация. Радиолокация, основанная на приёме радиоволн, отражённых от объекта (цели), возникла в 30-х гг. (Ю. Б. Кобзарев, Д. А. Рожанский и др.). Её методы позволяют определять местоположение удалённых предметов, их скорость и, в некоторых случаях, опознавать отражающий объект. Успешно развивается радиолокация планет (В. А. Котельников и др.). Радиолокация осуществляется при помощи наиболее коротких радиоволн (от метровых до миллиметровых). Метровые волны применяются главным образом для измерения больших расстояний, миллиметровые — для точного определения малых расстояний и обнаружения небольших объектов (в радиовысотомерах, в устройствах стыковки космических кораблей и т.п.). Радиолокация стимулировала быстрое развитие всех элементов, необходимых для генерации, излучения и приёма метровых и более коротких волн. Были созданы коаксиальные кабели и волноводы, коаксиальные и объёмные резонаторы, заменившие в этом диапазоне частот двухпроводные фидеры и резонансные колебательные контуры. Возникли остронаправленные антенны, в том числе многоэлементные, снабженные специальными отражателями или представляющие собой параболоиды, достигающие в диаметре нескольких десятков м. Специальные переключатели позволили использовать одну антенну одновременно для передачи зондирующих импульсов и для приёма импульсов, отражённых от цели. Для радиолокационных станций были разработаны специальные радиолампы — триоды с электродами плоской формы и коаксиальными выводами, приспособленные для работы с коаксиальными резонаторами, а также радиолампы, основанные на новых принципах: магнетроны, клистроны, лампы бегущей волны и лампы обратной волны. См. также Сверхвысоких частот техника.
Дальнейшее развитие в связи с потребностями радиолокации получили кристаллические детекторы, на основе которых были созданы полупроводниковые диоды. Их усовершенствование привело к появлению транзисторов, а впоследствии к разработке полупроводниковых микросхем (плёночных и интегральных), к созданию полупроводниковых параметрических усилителей и генераторов. Успехи полупроводниковой электроники обусловили вытеснение в большинстве областей Р. радиоламп полупроводниковыми элементами. Появились более совершенные электроннолучевые приборы, в том числе снабженные многоцветными экранами, что способствовало появлению цветного телевидения. Потребности радиолокации стимулировали развитие квантовой электроники и криогенной электроники (см. Криоэлектроника).
Радионавигация и близкая к ней радиогеодезия, прошедшие длинный путь развития (А. С. Попов, 1897; Н. Д. Папалекси, 1906, 1930; И. И. Ренгартен, 1912; Д. И. Мандельштам, 1930), — необходимые средства морской, воздушной и космической навигации, картографии и геодезические съёмки. Радиометоды позволяют определять положение и скорость объектов наблюдения с наивысшей точностью (погрешность в ряде случаев не превышает миллионной или даже стомиллионной доли измеряемой величины). Различают пассивные методы радионавигации, когда на подвижном объекте имеются лишь устройства, принимающие сигналы опорных наземных радиостанций, и активные, использующие радиолокацию. В практику вошли преимущественно пассивные и комбинированные радионавигационные системы. Однако, например, посадка космических аппаратов на Луну и планеты Солнечной системы обеспечивается автономными активными системами, получающими с Земли лишь исходные команды (см. Телемеханика).
Современная Р. характеризуется проникновением практически во все области человеческой деятельности. Радиосвязь при помощи обычного и быстродействующего буквопечатающего телеграфирования, радиотелефонная связь и передача изображений, чертежей, рисунков, газетных матриц, факсимиле стали доступными при любых расстояниях. Развитие космических исследований потребовало обеспечения надёжной радиосвязи с искусственными спутниками Земли (ИСЗ) и автоматическими космическими аппаратами, направленными к планетам или находящимися на их поверхности, передачи научной информации и изображений на Землю и передачи команд для управления этими аппаратами. Общеизвестно значение Р. в обеспечении космических полётов человека. С другой стороны, ИСЗ сами входят в состав линий связи в качестве ретрансляционных станций для осуществления надёжной связи между удалёнными пунктами, для передачи телевизионных программ, сигналов точного времени и т.п. (см. Космическая связь). Ввиду того, что ультракороткие волны плохо огибают земную поверхность, для передачи телевизионных изображений и для дальней связи используются радиорелейные линии, специальные высокочастотные кабельные линии и цифровые ретрансляторы (репитеры), в том числе установленные на ИСЗ.
Методы Р. лежат в основе действия многих систем автоматического управления, регулирования автоматического и обработки информации. Сложный комплекс элементов Р. представляют собой ЭВМ, совершенствующиеся вместе с развитием элементной базы Р.
Р. широко применяется в промышленности и народном хозяйстве. Высокочастотный нагрев используется для плавки особо чистых металлов в условиях вакуума и в атмосфере инертных газов, а также с успехом применяется для закалки поверхностей стальных деталей, для сушки древесины, керамики и зерна, для консервирования и приготовления пищи, в медицинских целях и т.д.
Р. тесно переплелась с различными областями науки. Примером может служить радиометеорология, изучающая влияние метеорологических процессов (движение облаков, выпадение осадков и т.п.) на распространение радиоволн и применяющая методы Р., в частности радиолокацию, для метеорологических исследований. Первым радиометеорологическим прибором был грозоотметчик Попова. При помощи этого прибора Попов изучал явления, сопровождающие грозы, чем, по существу, положил начало радиометеорологии.
Исследования атмосферных радиопомех привели к возникновению радиоастрономии (К. Янский, США, 1931), которая располагает средствами наблюдения небесных объектов на расстояниях, недоступных оптическими телескопам. Радиотелескопы сделали возможным открытие пульсаров, подробное исследование невидимого ядра нашей Галактики, квазаров, солнечной короны, поверхности Солнца и др.
Радиотехнические методы и устройства применяются при создании приборов и устройств для научных исследований. Ускорители заряженных частиц представляют собой, по существу, мощные генераторы радиочастотных колебаний с блоками модуляции, линиями передачи и специальными резонаторами, в которых происходит процесс ускорения частиц. Большая часть установок для исследования элементарных частиц и космических лучей представляет собой сложные радиотехнические схемы и блоки, позволяющие идентифицировать частицы по наблюдаемым результатам их взаимодействия с веществом. Сложные системы обработки данных, зачастую содержащие ЭВМ, позволяют вычислять энергию, заряд, массу и др. характеристики частиц. Методы изотопного анализа и магнитометрии, опирающиеся на Р., используются в археологии для объективного измерения возраста археологических объектов. Радиоспектроскопы различного типа, в том числе для исследований электронного, ядерного и квадрупольного резонансов, являются радиотехническими приборами, применяемыми в физике, химии и биологии при определении характеристик атомных ядер, атомов и молекул, при изучении химических реакций и биологических процессов (см. Радиоспектроскопия).
На основе развития Р. возникли электроакустика, изучающая и реализующая практические процессы преобразования звука в электрические колебания и обратно, различные системы звукозаписи и воспроизведения (магнитная и оптическая запись звука), а также системы, использующие ультразвук в технике (ультразвуковая связь под водой, обработка материалов, очистка изделий), медицине и т.п. Аппаратура, применяемая в ультразвуковой технике, является, по существу, радиоаппаратурой (генераторы, преобразователи, усилители и т.п.)
Р. породила мощную радиопромышленность, выпускающую радиоприёмники и телевизоры массового применения, связные, радиовещательные и телевизионные станции, аппаратуру магистральных линий связи, промышленное и научное радиооборудование, радиодетали и т.п.
Большую роль в развитии Р. играет деятельность международных и межгосударственных радиотехнических союзов и обществ, издание научных периодических журналов. Международный научный радиосоюз (МНРС) — один из старейших научных союзов; он объединяет ведущие научные организации многих стран. Сов. учёные активно участвуют в работе союза с 1957. МНРС каждые три года проводит Генеральные ассамблеи, подводящие итоги развития Р. и формулирующие её новые актуальные задачи. МНРС также систематически проводит тематические симпозиумы. Важнейшие межгосударственные организации, регламентирующие деятельность стран-участниц в области радиосвязи и радиовещания, — Международный консультативный комитет по радио (МККР) и Международная комиссия по распределению радиочастот (МКРЧ), в их работе активно участвует Сов. Союз.
Массовая организация в области Р. в СССР — Научно-техническое общество радиотехники, электроники и связи им. А. С. Попова, секции и местные организации которого работают во многих городах всех союзных республик. Из зарубежных радиотехнических обществ наиболее известен институт инженеров в области электроники и электротехники (IEEE; США). В СССР регулярно издаются общесоюзные журналы «Радиотехника и электроника», «Радиотехника», «Радио». За рубежом вопросам Р. посвящены периодические издания: «IEEE Proceedings», «L'Onde Electrique», «QST», «Alta Frequenza», «Hochfrequenztechnik und Elektroakustik», «Wireless Engeneer» и др.

Информация взята из сайта http://www.cultinfo.ru