ICOM IC-A14 / S, ICOM IC-A15 / S

IC-A14-S

 

IC-A1510-keypad
IC-A15SSimple key 

 IPX4MIL-STD 810

Описание

Проста эксплуатации, надежность, компактность и превосходный звук ICOM

Мощность аудио выхода 700 мВт

Радиостанции авиационного диапазона практически всегда используются в условиях повышенных шумов, так что отличное качество звучания и громкость аудио сигналов – залог успешной работы. Трансиверы серии IC-A14/S используют BTL усилители, которые позволяют увеличить уровень аудио мощности в два раза и обеспечивают успешную работу станции как в кабине пилота, так и вне ее. 

Полноценная кнопочная панель или упрощенная версия

Полноценная кнопочная панель IC-A14 позволяет вводить частоты каналов, а также выделить отдельную кнопку для установки аварийного канала 121.5 МГц. Трансивер IC-A14предусматривает ведение приема в NAV и WX каналах. А модель IC-A14S с упрощенной кнопочной панелью представляет собой идеальный коммуникационный инструмент для наземного авиационного персонала. 

Портативность, малый вес, надежный корпус

Трансиверы серии IC-A14S компактны (всего 120 мм в высоту), легки (350 г с аккумулятором BPN-232N), водонепроницаемы (эквивалентны стандарту IPX4) и при этом весьма надежны в работе в самых жестких условиях. 

Литиум-ионный аккумулятор большой мощности

Блок аккумуляторов емкостью 200mАч, BP-232N, обеспечивает до 18 часов рабочего времени трансивера IC-A14S (Передача:Прием:Ожидание = 5:5:90). В случае крайней необходимости предусмотрено использование корпуса BP-261 для 6 щелочных батарей типа АА (LR6). 

200 каналов памяти

В трансивере предусмотрено 200 каналов памяти с наименованиями длиной до 8 символов. Для упрощения использования каналов они сгруппированы в 10 банков каналов памяти. 

Прочие функции

  • 5Вт выходной мощности (1.5 Вт - CW)
  • Функция самоконтроля позволяет вам прослушивать ваш собственный сигнал через авиационную гарнитуру
  • Подсветка ЖК-дисплея в течение время суток
  • Функция автоматического ограничения шумов (ANL)
  • Сигнализация разряда аккумуляторов
  • Регулируемый уровень микрофонного усиления
  • BNC разъем подключения антенны.

Характеристики

Основные

 

IC-A15

IC-A15S

Диапазон частот
118.000–136.975МГц (COM)
Количество каналов памяти 200 каналов 
с 10 банками
100 каналов
Интервал каналов
25кГц
Требуемый источник питания
7.4В DC (Icom аккумуляторная батарея)
Потребляемый токTx
1.5A
RxРежим ожидания
50мА
Макс. аудио
500мА
Размеры (Ш×В×Т)
(без учета выступающих частей)
53×120×36.9 мм
Вес
350г
(с антенной и BP-232N)
Диапазон рабочих температур
от –20°C до +55°C
Стабильность частоты
±5ppm

Передатчик

 

IC-A15

IC-A15S

Выходная мощность
5.0/1.5Вт (PEP/CW)
Импеданс микрофона
3-conductor 2.5 (d) мм
(1/10”)/ 150Ом

Приемник

 

IC-A15

IC-A15S

Чувствительность
–3dBμ
(при 12дБ SINAD с CCITT)
Селективность
6дБ (более 7.5кГц)
60дБ (менее 25кГц)
Внеполосовой прием
Более 70дБ
Аудио выходная мощность
(на 10% искажений с нагрузкой 8Ом, 30% модуляция)
Встроенный динамик Более 700мВт
Внешний динамик Более 500мВт

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 F
Method, Proc.
Нижний предел давления при хранении 500.4 I
Нижний предел давления при использовании 500.4 II
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4-3 I
Минимальная температура эксплуатации 502.4-3 II
Тепловой удар 503.4 I
Солнечное излучение 505.4 I
Защита от дождя 506.4 I
Пылезащита 510.4 I
Колебания 514.5 I
Противоударность 516.5 I

Также встречается эквивалент MIL STD 810 -C, -D и -E.

Стандартная защита
Вода IPX4(Водостойкая защита)


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Батареи

BP-230N

BP-230N

(Li-Ion)
7.4В/950мАч (min.),
980мАч
BP-232N

BP-232N

(Li-Ion)
7.4В/1900мАч
(min.),
2000мАч

 

 

Футляр для аккумуляторов

BP-261BP-261

AA (LR6)×6 щелочных элементов

 

   

Зарядки

BC-119N

BC-119N

Быстрое зарядное устройство (требуется AD-106)
BC-119N

BC-121N

Быстрое 6-ти местное зарядное
(требуется AD-106)
BC-160

BC-160

Быстрое зарядное устройство
BC-171

BC-171

Регулярное зарядное устройство
BC-179

BC-179

Зарядное устройство батареи
     

Адаптер переменного/постоянного тока

BC-145S

BC-145S

16В/1A (Используйте для BC-119N)
BC-147S

BC-147S

12В/200мА
(Используйте для BC-171 or BC-179)
BC-157S

BC-157S

12В/6.6A
(Используйте для BC-121N)
BC-123S

BC-123S

12В/1A
(Используйте для BC-160)

Адаптер зарядного устройства

AD-106

AD-106

(Используйте для BC-119N/BC-121N)
     

Кабели постоянного тока

OPC-515LOPC-515L

(Используйте для BC-119N)
OPC-656

OPC-656

(Используйте для BC-121N)
   

Автомобильная зарядка

CP-22

CP-22

(Используйте для BC-179)

 

     

Микрофон

HM-173

HM-173

     

Кабель адаптера гарнитуры

OPC-499

OPC-499

     

Клипса

MB-94

MB-94

 

   

Крепления на ремень

MB-96F

MB-96F

MB-96FL

MB-96FL

Удлиненного типа
   

Антенна

FA-B02AR

FA-B02AR

 

 

ICOM IC-A24 / IC-A24 E, ICOM IC-A6 / IC-A6E

IC-A24

 

IC-A24ENAV channelNAV channel
IC-A6ENAV channel

 8.33кГц ReadyMIL-STD 810

 

Описание

Авиационные радиостанции IC-А6 и IC-А24 отличаются повышенной надежностью и множеством дополнительных функций. Радиостанция IC-A24 имеет функцию VOR-навигации, которая показывает направление от или к VOR-станции. Индикатор “Отклонения Курса” (Course Deviation Indicator) показывает отклонение между реальным курсом полета и расчетным. В режиме CDI функция “Автоматическая Система Настройки Направления” (Auto Bearing Set System) позволяет одним нажатием центрировать полетный курс. В навигационном режиме возможно применение полудуплексной связи.

Хорошо обозначенные кнопки и увеличенное расстояние между ними позволяют легко работать с радиостанцией, даже когда руки находятся в перчатках. Удобный высококонтрастный дисплей с легко читаемой информацией с широким углом обзора. Дисплей и кнопки подсвечиваются в ночное время.

Радиостанция имеет компактные размеры 54x129,3x35,5 мм, легко крепится на поясе или помещается в сумке. Водостойкость конструкции радиостанции соответствует классу IPX4 и позволяет эксплуатировать ее в условиях дождя.

Регулировка громкости и выбор канала могут осуществляться как вращающейся ручкой настройки на верхней панели радиостанции, так и с помощью кнопок Up/Down на передней панели радиостанции. Уровень звука и номер канала отражаются на дисплее радиостанции во время регулировки и настройки.

Имеется гнездо для подключения внешнего источника питания.

Радиостанция может программироваться с компьютера с установленной программой CS-A24, возможно также клонирование установок радиостанции.

Имеется функция SIDETONE, которая позволяет с помощью стандартной гарнитуры или наушника прослушивать передаваемый сигнал.

Радиостанция имеет:

  • 200 каналов памяти (20 каналов x 10 банков), каждому из которых можно присвоить буквенно-цифровое обозначение длиной до 6 символов; 
  • вызов аварийного канала 121,5 МГц одним нажатием;
  • различные типы аккумуляторов большой емкости;
  • запрограммированные каналы погоды;
  • встроенную функцию ANL (Auto Noise Limiter) для уменьшения шума.

Характеристики

Основные

 

IC-A24E

IC-A6E

Диапазон частотTx 118.000–136.9917МГц
Rx 108.000–136.9917МГц 118.000–136.9917МГц
Количество каналов памяти 200к (20к × 10 банков)
Интервал каналов
(зависит от версии)
8.33/25KHz or 25кГц
Требуемый источник питания 7.2В DC (Аккумуляторная батарея),
11.0В DC (Внешний DC штекер)
Потребляемый токTx 1.8A (25кГц/8.33кГц версия) 
1.5A (25кГц версия)
RxРежим ожидания 70мА
Макс. аудио 500мА (25кГц/8.33кГц версия)
300мА (25кГц версия)
Размеры (Ш×В×Т)
(без учета выступающих частей)
54×129.3×35.5 мм
Вес 430г
(с BP-210N и антенной)
Диапазон рабочих температур от –20°C до +55°C
Стабильность частоты ±1 ppm (25кГц/8.33кГц версия)
±5 ppm (25кГц версия)

Передатчик

 

IC-A24E

IC-A6E

Выходная мощность (PEP/Carrier) 5.0/1.5Вт (25кГц/8.33кГц версия)
3.6/1.0Вт (25кГц версия)
Импеданс микрофона 100kОм

Приемник

 

IC-A24E

IC- A6E

Чувствительность

COM (12дБ SINAD)
1мкВ (25кГц/8.33кГц версия)
0.71мкВ (25кГц версия)

NAV (6дБ S/N)
1мкВ (25кГц/8.33кГц версия)
0.71мкВ (25кГц версия)

Селективность 6дБ
2.778/7.5кГц (8.33кГц/25кГц)
60дБ
7.37/25кГц (8.33кГц/25кГц)
Внеполосовой прием 70дБ
Аудио выходная мощность
(на 10% искажений при 8Ом)
470мВт (8.33кГц/25кГц версия)
500мВт (25кГц версия)

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 F
Method, Proc.
Нижний предел давления при хранении 500.4 I
Нижний предел давления при использовании 500.4 II
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4 I
Минимальная температура эксплуатации 502.4 II
Тепловой удар 503.4 I
Солнечное излучение 505.4 I
Соляной туман 509.4
Пылезащита 510.4 I
Колебания 514.5 I
Противоударность 516.5 I


Также встречается эквивалент MIL STD 810 -C, -D и -E.
Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Батарея

BP-210N

BP-210N

Ni-MH: 7.2 В/1500 мАч (min.)/1650 мАч
     

Футляр для аккумуляторов

BP-208N

BP-208N

AA (LR6)×6 ячеек
     

Зарядное устройство

BC-167S

BC-167S

     

Зарядки

BC-119N

BC-119N

Быстрое зарядное устройство
BC-144N

BC-144N

Быстрое зарядное устройство
BC-121N

BC-121N

Быстрое мультизарядное устройство
 

Адаптер переменного/постоянного тока

BC-145S

BC-145S

(Используйте для BC-119N/BC-144N)
BC-157S

BC-157S

(Используйте для BC-121N)
   

Адаптер зарядного устройства

AD-101

AD-101

(Используйте для BC-119N/BC-121N)
     

Кабели постоянного тока

OPC-515L

OPC-515L

(Используйте для BC-119N)
OPC-656

OPC-656

(Используйте для BC-121N)
   

Автомобильная зарядка

CP-20

CP-20

     

Микрофон

HM-173

HM-173

     

Кабель адаптера гарнитуры

OPC-499

OPC-499

     

Клипсы

MB-86

MB-86

MB-103

MB-103

   

Крепления на ремень

MB-96F

MB-96F

(Используйте для MB-103)
MB-96N

MB-96N

MB-96FL

MB-96FL

Удлиненного типа
 

Чехол

LC-159

LC-159

     

Антенна

FA-B02AR

FA-B02AR

 

 

ICOM IC-A210 / IC-A210E

IC-A210-1

 

 

 MIL-STD 810

Описание

Инновационный трансивер авиационного диапазона

Большой светодиодный дисплей с высоким уровнем яркости
Трансивер IC-A210 снабжен большим дисплеем на основе органических светодиодных индикаторов (OLED). Дисплей на основе OLED самостоятельно обеспечивает световое излучение и обладает существенными преимуществами по яркости, четкости, контрастности изображения, а также углу обзора и времени отклика по отношению к традиционным дисплеям. Кроме этого, трансивер снабжен функцией автоматического затемнения, которая позволяет определить оптимальный уровень яркости для дневного и ночного режимов. 

Простота установки канала

Вы можете легко и просто установить любой канал памяти в трансивере IC-A210. Двух контактная кнопка со стрелками позволяет легко осуществлять переключение между основным и резервным рабочим каналом. Функция двойного приема позволяет вести прием в двух каналах одновременно. Кроме этого, функция автоматического стека позволяет хранить в памяти 10 последних использованных каналов и мгновенно устанавливать их при необходимости. 

Функция GPS памяти

При подключении внешнего GPS приемника, снабженного базой рабочих частот аэропортов, необходимая рабочая частота для связи с аэропортом может быть передана в трансивер IC-A210 при приближении к аэропорту.

Источник питания 12V/24V DC

Встроенный DC преобразователь напряжений позволяет использовать различные источники питания 12/24V (11.5 –27.5V). Таким образом, трансивер IC-A210 может быть установлен на борту практически во всех воздушных и наземных транспортных средств. 

Функции селекторной связи

Трансивер IC-A210 снабжен функцией селекторной связи с голосовой активизацией. Таким образом, у командира корабля имеется возможность разговора со вторым пилотом через гарнитуру. Трансивер также снабжен функциями регулировки уровня аудиосигнала и порога шумоподавителя. 

Простота установки

Трансивер IC-A210 может быть установлен в кабине пилота с помощью стандартных монтажных скоб, которые использовались с трансиверами IC-A200. В комплекте с трансивером поставляются два типа адаптеров задней панели для упрощенного подключения трансивера.

Другие функции 

  • Установка аварийной частоты 121.5 мГц нажатием единственной кнопки
  • Функция самоконтроля излучаемого сигнала в головных телефонах
  • Функция ANL (автоматического ограничения шумов) для подавления помех импульсного типа
  • Возможность дистанционного управления
  • Таймера тайм-аута
  • Программирование настроек с персонального компьютера
  • Блокировка ручки настройки и органов управления передней панели
  • Функция проверки шумоподавления

Характеристики

Основные

 

IC-A210E

Диапазон частот 118.000–136.975МГц
Интервал частоты 25кГц, 8.33кГц
Количество каналов памяти 10 регулярной памяти, 200 групп памяти, 
10 GPS, 10 Авто стек (история) памяти
Требуемый источник питания 13.8/27.5В DC
(отрицательное заземление)
Размеры (Ш×В×Т)
(без учета выступающих частей)
160×34×271 мм
Вес 1.0кг
Диапазон рабочих температур от –20°C до +55°C
Стабильность частоты ±1ppm (0°C до +40°C)

Передатчик

 

IC-A210E

Выходная мощность 6Вт типичный
Импеданс микрофона ---

Приемник

 

IC-A210E

Чувствительность (AM) –101dBm
12дБ SINAD
Селективность 8.33кГц интервал к. 6дБ ±2.8кГц
25кГц интервал к. 6дБ ±8.5кГц
Аудио выходная мощность
(на 10% искажений)
Встроенный динамик 5Вт при нагрузке 4Ом
Наушник 60мВт при нагрузке 500Ом

Применяемые военными США спецификации

IC-A210E был протестирован и принят соответственно требованиям MIL-STD и строгим экологическим стандарам.

СтандартMIL-810 F
Method, Proc.
Нижний предел давления при хранении 500.4 I
Нижний предел давления при использовании 500.4 II
Максимальная температура хранения 501.4 I
Максимальная температура эксплуатации 501.4 II
Минимальная температура хранения 502.4 I
Минимальная температура эксплуатации 502.4 II
Тепловой удар 503.4 I
Солнечное излучение 505.4 I
Колебания 514.5 I
Противоударность 516.5 I

Также встречается эквивалент MIL-STD-810-C, -D и -E.


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Монтажный кронштейн

MB-53

MB-53

     

Адаптер задней панели

MB-113

MB-113

     

Микрофон

HM-176

HM-176

 

 

ICOM IC-A110 / IC-A110EURO

IC-A110-1

 

 

 MIL-STD 810

Описание

Надежность и гибкость радиосвязи экипажа с землей

Выпуском трансивера IC-A110/EURO компания ICOM определила новый стандарт радиосвязи для наземных базовых станций, которые подразумевает надежность и гибкость функционирования в различных рабочих условиях. 

Возможность установки на любое транспортное средство. Предусмотрено питание трансивера от аккумулятора любого транспортного средства, как 12 В, так и 24 В. 

Мощный громкоговоритель на передней панели. 

Мощный громкоговоритель, расположенный на передней панели устройства, обеспечивает прямую передачу принимаемого сигнала и упрощает его восприятие. Кроме этого, вы можете дополнительно подключить внешний громкоговоритель мощностью до 10 Вт. 

Выбор режима навигации по частоте. 

Простое вращение ручки настройки может приводить к изменению наиболее часто используемых каналов или необходимых частот, в зависимости от вашего выбора. 

Наименования каналов памяти. 

Вы можете определить наименования для каждого канала памяти длиной до 7 символов, что существенно упрощает управление каналами. 

Функции самоконтроля. 

Передаваемые оператором сообщения и вызовы могут быть проконтролированы с помощью стандартной авиационной гарнитуры, которая эффективна даже в сложных рабочих условиях аэропорта. При использовании гарнитуры стандартного типа необходимо использования опционального устройства OPC-871. 

Удобные функции сканирования. 

Установка микрофона на крюк активизирует функцию автоматического сканирования. При снятии микрофона с крюка может быть установлен последний использованный канал или приоритетный канал, в зависимости от конфигурации. 

Функционирование в условиях пониженных температур. 

Специальный ЖК-дисплей предназначен для работы в условиях пониженных температур -30°C до +70°C. Полная функциональность и индикация сохраняется даже в более холодных условиях. 

Дополнительные функции 

  • В дополнении к стандартному шагу каналов 25 кГц , имеется дополнительная версия, удовлетворяющая новому стандарту шага каналов 8.33 кГц
  • Предусмотрены различные функции сканирования, включая VFO и приоритетного сканирования.
  • 99 каналов памяти
  • 36 Вт излучаемой мощности
  • Компактные габаритные размеры 150 х 50 х 180 идеально подходят для монтажа трансивера практически во всех видах транспортных средств.

Характеристики

Основные

 

IC-A110EURO

Диапазон частотTx: 118.000–136.975 МГц
Rx: 118.000–136.975 МГц
Количество каналов памяти 99к.
Интервал каналов 25кГц/8.33кГц
Требуемый источник питания 13.75В or 27.5В DC
(автоматический выбор)
Потребляемый токTx 5.0A Макс.
RxРежим ожидания 500мА
Макс. аудио 4.0A
Размеры (Ш×В×Т)
(без учета выступающих частей)
150×50×180 мм
Вес 1.5кг
Диапазон рабочих температур –20°C до +55°C
Стабильность частоты ±1ppm (0°C до +40°C)

Передатчик

 

IC-A110EURO

Выходная мощность 36/9Вт (PEP/Carrier)
Импеданс микрофона 600Ом

Приемник

 

IC-A110EURO

Чувствительность 5dBмкВ (12дБ SINAD)
Внеполосовой прием 70дБ
Аудио выходная мощность
(на 10% искажений)
10Вт при нагрузке 8 Ом
100мВт при нагрузке 500Ом

Применяемые военными США спецификации

Icom делает прочные продукты, которые были проверены и приняты в соответствии требованиям MIL-STD стандартов защиты.

СтандартMIL-810 E 
Method, Proc.
Нижний предел давления при хранении 500.3 I
Нижний предел давления при использовании 500.3 II
Максимальная температура хранения 501.3 I
Максимальная температура эксплуатации 501.3 II
Минимальная температура хранения 502.3 I
Минимальная температура эксплуатации 502.3 II
Тепловой удар 503.3 I
Солнечное излучение 505.3 I
Защита от дождя 506.3 I
Соляной туман 509.3
Пылезащита 510.3 I
Колебания 514.4 I
Противоударность 516.4 I


Также встречается эквивалент MIL STD 810 -C и -D.
Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Микрофон

HM-161

HM-161

     

Адаптер для наушников

OPC-871

OPC-871

 

ICOM IC-A120

A120 HM 216

 

 

 

 

 

 

 

Описание

Icom IC-A120 — авиационная радиостанция высокой производительности с активным шумоподавлением и беспроводной связью Bluetooth. Полноматричный ЖК-дисплей позволяет добиться высокой четкости отображения буквенно-цифровых символов и значков. Программирование каналов памяти и другие настройки радиостанции авиационного диапазона можно осуществлять прямо с передней панели. В зависимости от настроек радиостанции эти функции могут быть ограничены.

Стационарная авиа радиостанция Icom IC-A120 может использоваться со сторонней беспроводной bluetooth-гарнитурой благодаря дополнительному модулю Bluetooth. Также с применением мини-гарнитуры Bluetooth доступна функция местного эффекта. Новая опция встроенного активного шумоподавления позволяет уменьшить фоновый шум при приеме-передаче сигналов.

Эта функция эффективна в чрезвычайно шумных условиях аэропорта. Автоматический ограничитель шума снижает уровень импульсного шума, например зажигания двигателя. Функции активного шумоподавления и автоматического ограничителя шума не могут быть использованы одновременно.

Характеристики:

  • Частоты: 118-137 МГц.
  • Модуляция: АМ.
  • Количество каналов: 200.
  • Мощность: 9/36 Вт.
  • Питание: 12 / 24 В (автоматический выбор).
  • Габаритные размеры: 160×45×193 мм.
  • Вес: 1,5 кг.

Комплектность поставки

  • Приемопередатчик.
  • Выносной микрофон.
  • Скоба крепления.
  • Инструкция пользователя.
  • Упаковка.

Характеристики

Категории Авиационные радиостанции
Диапазон частот 118-137 МГц
Интервал между каналами 25 кГц /8.33 кГц
Мощность 9/36 Вт
Количество каналов 200
Размеры 161 х 45 х 175 (мм)
Вес около 1.5 кг
Источник питания

Аксессуары

  1. Приемопередатчик.
  2. Выносной микрофон.
  3. Крепление.
  4. Инструкция пользователя.
  5. Упаковка.

 

ICOM IC-A220

ic a220

 

 

 

 

 

Описание

Icom IC-A220 одна из лучших бортовых радиостанций авиационного типа производства японской компании Icom.

В модельном ряду радиостанция пришла на смену предыдущей разработке - Icom IC-A210, привнося в конструкцию расширенные функциональные возможности и новейшие технологии компании.

Среди них стоит отметить: большой яркий дисплей, построенный по технологии OLED, которая, в сравнении с обычными TFT дисплеями обеспечивает более насыщенную контрастность, яркость, широкие углы обзора и пониженное энергопотребление.

Также заслуживают внимания такие опции как:

- возможность программирования радиостанции через ПК;

- преобразователь напряжения 12/24 V, благодаря которому Icom IC A220 можно подключать к борту практически любого авиасудна через стандартное крепление;

- опция автоматической регулировки яркости экрана повышает комфорт пилота при мониторинге приборной панели;

- интерком обеспечивает удобную многостороннюю связь между членами экипажа, а двойной мониторинг обеспечит наблюдение за двумя каналами одновременно.

Функция программирования каналов памяти даёт возможность записать до 9-ти часто используемых частот и включить защиту от перезаписи.

Простой интуитивный интерфейс позволит быстро освоиться с элементарным управлением рацией Icom IC A220, а при помощи двухпозиционной клавиши можно быстро переключатся между основным и запасным каналами.

Удобным нововведением является автоматическое запоминание последних 10-ти использованных каналов и при необходимости быстрая работа с ними. Лёгкому общению со вторым пилотом способствует функция селекторного общения с голосовой активацией (VOX) по гарнитуре.

 Icom ICA220 обеспечивает шумоподавитель с регулировкой порога повышения разборчивости аудио сигнала.

Функциональные возможности рации:

  • - GPS память при подключении внешнего приемника GPS (с авто передачей частоты аэропорта при сближении)
  • - Автоматический ограничитель импульсных шумов (ANL)
  • - Селекторная связь со вторым пилотом по гарнитуре
  • - Функция приёма метео сводки от службы NOAA
  • - Память на 10 последних использованных каналов
  • - Простой монтаж при помощи стандартных скоб
  • - Самоконтроль уровня сигнала в гарнитуре
  • - Мониторинг двух каналов одновременно
  • - Шумоподавитель с регулировкой уровня
  • - Проверка активности шумоподавления 
  • - Авто регулировка яркости дисплея
  • - Программирование рации через ПК
  • - Блокировка органов управления
  • - Большой, яркий OLED дисплей
  • - Частоты  118 - 136,975 МГц
  • - Дистанционное управление
  • - Простая установка канала
  • - Таймера разговора
  • - VFO сканер

Характеристики

Аварийная частота – 121.5 Гц

Диапазон частот – 118.000 – 136.975 Мгц

Мощность несущей – 8 Вт

Количество каналов – 20 , 50, 10 (GPS)

Рабочая температура - -20+50С

Шаг сетки частот – 25 кГц

Габариты – 160х34х271 мм

Вес – 1 кг

Чувствительность – 2 мкВ



Аксессуары

1. Приемопередатчик.

2. Скоба крепления.

3. Инструкция пользователя.

4. Упаковка.

ИСТОРИЯ РАДИОПЕРЕДАТЧИКА: Конструкции и их творцы.
Для передачи сигналов на большие расстояния, как правило используются радиоволны. Их легко излучать и принимать, к тому же их можно “снабдить” любой информацией, выбор диапазона длин волн очень большой - от нескольких тысяч метров до миллиметров. Все это позволяет решать самые разные задачи, от радиовещания на всю планету до работы местных программ, которые не создают помех соседним областям. Для создания радиоволн с конца 19 века используют радиопередатчики. Под радиопередатчиком обычно понимают генератор электромагнитных волн, который связанный с антенной. В передающей антенне энергия высокочастотных токов преобразовывается в энергию электромагнитных волн. Известно несколько основных типов передатчиков радиоволн: искровые, дуговые, машинные, ламповые, полупроводниковые и др.
Исторически первыми были искровые передатчики. В них колебания возбуждались в контуре во время появления искры, поэтому они и получили название – “искровой передатчик”. Эти передатчики занимали большой диапазон частот. Приемник мог ловить фактически одну радиостанцию, сигнал которой занимал почти всю шкалу настройки. В начале первой мировой войны Россия имела 72 полевые и 4 автомобильные радиостанции, и 6 стационарных искровых радиостанций.
Из стационарных станций, 3 были системы “Marconi”, находившиеся в Бобруйске, Ташкенте и Александрове-Уральске, а 3 – системы “Telefunken” распологавшиеся в Владивостоке, Хабаровске и Харбине. Во время войны, в 1914 г, немцы перерезали подводные телеграфные кабели в Балтийском море, которые соединяли Россию со странами Запада и тогда всего за 100 дней были построены мощные передающие станции для международной связи работавшие в диапазоне волн: 5000 м, 7000 м и 9000 м. Радиостанции по конструкции были однотипными и являлись самыми мощными в Европе. Мощность в антенне составляла 100 кВт.Питались радиостанции от огромной аккумуляторной батареии напряжением 12000 В. Во время передачи аккумуляторы разряжались через колебательную цепь и антенны, создавая в окружающем пространстве радиоволны. Аккумуляторы заряжались от машин постоянного тока, которые вращались двумя дизелями мощностью по 294 кВт.Приведенный факт еще раз подтверждает сомнительность мифа большевиков о промышленной отсталости России, это действительно была Великая Россия. Одна из построенных радиостанций располагалась в Москве на Ходынском поле, другая - в Царском селе, под Санкт-Петербургом. Однако работа мощных искровых передатчиков этих станций вызывала такие сильные помехи, что затрудняла прием радиограмм. В этой связи в г. Тверь построили специальную станцию для приема сообщений заграничных радиоцентров. Метод возбуждения электромагнитных волн с помощью электрической искры, как известно использовал еще Г. Герц, и еще в течении почти 20 лет этот метод практически был основным для передачи сообщений без проводов. Во время работы таких передатчиков между зубцами разрядника проскакивали ослепляющие искры. Появление искр сопровождалось хлопками, подобными выстрелам из винтовки. “Стрельба” разрядника была слышна на расстоянии более 2 км. Искровые генераторы имели такие недостатки, как помехи радиоприему, низкий коэффициент полезного действия и неспособность передавать человеческую речь.
Исследования по радиотелефонии во многих странах показали, что для успешной передачи текстов необходимы незатухающие колебания, тогда как искровые передатчики давали только затухающие колебания. Для получения незатухающих колебаний сначала использовали электрическую дугу Петрова, к слову, на западе ее именуют, дугой Дэви. В 1900 г. английский инженер электрик Вальдемар Дуддель (W.Duddel) указал метод получения устойчивых и мощных высокочастотных колебаний с помощью дуги. С этой целью в схему дугового генератора он включил колебательный контур, настроенный на высокую частоту. По прошествии 2 лет, другой Вальдемар, но уже датский инженер Вальдемар Паульсен (V. Poulsen), известный тем, что первым изобрел магнитофон, построил практическую конструкцию радиотелеграфного дугового генератора незатухающих колебаний. Новый путь получения незатухающих колебаний заявил о себе только во время первой мировой войны, когда радиостанции стран Антанты мгновенно перестали ловить сигналы передатчиков немецкого флота. Оказалось, что задолго до начала войны немецкие специалисты учли недостатки искровых передатчиков и перешли на передатчики с использованием электрической дуги. Таинственное исчезновение немецких сигналов объяснялось тем, что при передаче незатухающих колебаний телеграфные знаки не прослушиваются телефоном. Из-за этого в телефонах шел неразборчивый треск. Дуговые передатчики хорошо себя зарекомендовали на мощных телеграфных станциях того времени. Они обеспечивали телеграфную связь на расстоянии в несколько тысяч километров. В 1920 г. была установлена рекордная связб между Гельтоавым (Англия) и Малабаром (остров Ява, Индонезия) на расстоянии 12000 км. Регулярные радиотелеграфные передачи велись на значительно меньшие расстояния. Лучшие дуговые генераторы стабильно работали на волнах не короче 1000 метров (примерно середина нынешнего широковещательного диапазона длинных волн).
Замена электрической искры дугой также не ликвидировала все упомянутые недостатки использовавшихся в то время генераторов. Радиотехника все больше склонялась к использованию машинных генераторов высокой частоты для непосредственного питания антенных цепей радиостанций. Хотя эти генераторы и имели недостатки другого рода, низкая частота генерирования тока и получение соответственно этому длинных радиоволн, но они позволяли в какой-то мере решить на время проблему радиосвязи, хотя и не полностью. Первым приблизился к решению этой проблемы профессор Питсбурского университета и консультант Метеорологического бюро Реджинальд Обри Фессенден (Fessenden Reginald Aubrey). И, не удивительно, он еще в 1895 г. пришел к мысли о замене затухающих электрических колебаний незатухающими, способными передать речь, если их промодулировать звуковыми частотами. В 1900 г. он пытался передать речь с помощью искрового передатчика, но безуспешно. В 1906 г. для этой цели он решил использовать генераторы высокой частоты. На протяжении нескольких лет был сконструирован ряд генераторов с частотой тока от 60 кГц до 200 кГц. Р. Фессендена называют одним из отцов радиовещания, до него все радиопередачи шли в режиме телеграфа, с использованием азбуки Морзе. 4 января 1906 г. Р. Фессенден провел первую радиопередачу в эфир из американского городка Брант Рок штата Массачусетс. В передаче прозвучали музыкальное произведение Генделя “Ларго” и многочисленные рекламные объявления. Слушатели принимали передачу на детекторные приемники. За эту радиопередачу только один “отец” Р. Фессенден попал в известную книгу рекордов “Гинесса”, про других же почему-то забыли. Дело в том, что когда Р. Фессенден задумал передать речь по радиоволнам ему понадобился машинный высокочастотный генератор с небывалой для того времени скоростью вращения 100000 об/с и он обратился к известнейшему электротехнику того времени Чарлзу Протеусу Штейнмецу работавшему в фирме General Electric Company. К слову, позже, он стал большим другом Советской России и даже вождь мирового пролетариата В.И.Ленин посчитал за честь послать ему свое фото с надписью. Ч. Штейнмец поручил сконструировать такой генератор своему соструднику, 26–летнему молодому выходцу из Швеции Эрнсту Александерсону (Ernst Frederic Werner Alexanderson (25.01.1878-14.05.1975)). Э. Александерсон не только разрабатывал машинный передатчик, но производил его монтаж и находился на передающей станции во время исторического радиовещания. В последствии Э. Александерсон стал выдающимся ученым радиотехником. Он проработал 46 лет в General Electric Company, со временем стал ее главой, в этой компании получил 322 патента и еще принял участие в создании Radio Corporation of America. За консультациями по машинным передатчикам к нему приезжал из Европы не менее знаменитый, Гульемо Маркони. С помощью машинного генератора его конструкции американский президент Вильсон передал через океан ультиматум Германии о окончании войны в 1918 г. В этом же году, отец магнитофона В. Паульсен не оставляет попыток передать речь по радиоволнам с помощью дугового передатчика и проводит эксперименты в этом направлении. Проанализировав полученные результаты, он отдал в дальнейшем предпочтение другим типам генераторов.
В России работы по использованию машинных генераторов для радиосвязи велись в различных фирмах. Наиболее заметными были результаты инженера Валентина Петровича Вологдина из российской фирмы “Н.Н.Глебов и КО” находившейся за Московской заставой в Санкт-Петербурге. Сейчас на месте заводов этой фирмы расположен завод “Электросила”. Первая русская машина высокой частоты была построена в 1912 г. В.П.Волгдиным. Ее мощность составляла 2 кВт при частоте 60 Гц. Ротор машины вращался с угловой скоростью 2000 об/мин, а линейная скорость на окружности составляла 314 м/с. В 1915 г. В.П.Вологдин разработал машинным генератором для бортовой радиостанции самого большого самолета того времени, “Илья Муромец”. Со временем В.П. Вологдин создал надежные и мощные машинные генераторы, которые позволили осуществить длинноволновую радиотелеграфную связь между Европой и Америкой. Радиосвязь с помощью машинных генераторов В.П.Вологдина на радиоволнах большой длины, например, 5 км, себя оправдала. Для высокочастотных же диапазонов машинные генераторы не годились, тут требовался другой тип генераторов электромагнитных волн. Нужно отметить, что В.П.Вологдин был заметным ученым в области использования машинных генераторов для радиосвязи. Известный отечественный радиоспециалист, академик А.И.Берг, находясь в 1929 в США встречался с уже упоминавшемся профессором Эрнстом Александерсон. Э.Александерсон в разговоре с А.И.Бергом проявил полную осведомленность о исследованиях в области радиотехники проводимых в России и особенно отметил конструкцию машины высокой частоты В.П.Вологдина. По его мнению она была лучше той, которую создал он.
И, все же, несмотря, на впечатляющие успехи дуговых и машинных передатчиков, они были вынуждены уступить свое место в радиосвязи ламповым передатчикам. Ламповые передатчики практически могли работать в любом диапазоне частот. Потребовалось 7 лет после изобретения немцем Робертом фон Либеном (Robert von Lieben) и американцем Ли де Форестом лампового триода прежде, чем появился первый ламповый передатчик. Создателем первого лампового передатчика стал 30 летний сотрудник немецкой фирмы “Telefunken” Александр Мейсснер (A. Meissner), который 10 апреля 1913 года подал в Германское патентное ведомство заявку на изобретение. Схема передатчика базировалась на несовершенной ионной лампе триод своего соотечествинника фон Либена. В этой схеме, частота генерируемых колебаний могла быть выше или ниже резонансной частоты колебательного, в зависимости от величины связи между катушками (на рисунке патента детали 6,9 и 10). При слабой связи частота колебаний ниже резонансной частоты контура, а при сильной – выше. Через 2 месяца была готова рабочая конструкция передатчика и уже 21 июня состоялась первая радиотелеграфная связь на расстоянии 36 км, между Берлином и Науэном. Генератор работал на волне 10 метров. Эксперимент А. Мейсснера показал, что ламповый триод является лучшим устройством для возбуждения электромагнитных колебаний высокой частоты, в сравнении с другими на то время. Схема А. Мейсснера благодаря своей простоте получила широкое распространение и дальнейшее развитие. В 1915 г. появилась схема передатчика американского инженера из Western Electric Company Леона Хартлея (L. Hartley), больше известная как индуктивная трехточечная генераторная схема. В отличии от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура. Через три года, другой инженер из этой компании, Эдвин Колпитц (E. Colpitts) предложил емкостную трехточечную схему. В основе схемы лежала емкостная связь между цепью анода и сетки и колебательный контур представляет при самогенерировании емкостное сопротивление. При таком построении схемы рабочая частота генератора лежит выше резонансной частоты контура. Эти три схемы передатчиков имеют применение до сего времени. К слову, схема передатчика Л. Хартлея была очень популярна в конструкциях передатчиков советских радиохулиганов работавших на средних волнах в 60-70-е годы. Для перехода от работы “морзянкой” к передаче реч, в первых ламповых передатчиках применяли амплитудную модуляцию. Обычный угольный микрофон включался в провод, идущий от генератора незатухающих колебаний к передающей антенне. От воздействия звуковых волн при разговоре изменялось сопротивление микрофона, а в такт с ним менялся ток в антенне.
После изобретения А. Мейсснера казалось, что большие, сложные и дорогие искровые, дуговые и машинные генераторы быстро станут ненужными. Ламповые генераторы были просты в изготовлении и эксплуатации, имели небольшой вес, легко перестривались с волны на волну и обеспечивали высококачественную передачу речи и музыки, а в дальнейшем изображения. Несмотря на это, во многих странах не спешили отказываться от старых передатчиков, их продолжали использовали вместе с ламповыми. На американском флоте в период с 1919 г. по 1921 г. провели сравнительные испытания всех типов передатчиков стоящих на короблях. Во время испытаний все передатчики работали на волне 1900 метров и использовали одну и ту же антенну. Ток в антенне всех типов передатчиков составлял 8 А. Оценка качества приема производилась на 11 радиоприемных станциях.
Анализ полученных результатов показывает, что наибольшая слышимость приема зависит от типа детекторного приемники и для этого типа приемников радиоприем идет с большей громкостью, если работает машинный передатчик. При использовании гетеродинных приемников слышимость передачи, когда работает ламповый передатчик в 2 раза больше по сравнению с дуговым и почти в 9 раз больше в сравнении с искровыми передатчиками. Преимущества ламповых передатчиков в сравнении с другими типами объясняются высокой стабильностью генерируемого сигнала ламповым триодом.
В разработке приемно-усилительных и генераторных ламп большая роль принадлежит так же русскому физику Н.Д.Папалекси, который заложил основы теории преобразовательных схем в электронике. В 1911-12 г.г. под его руководством была разработана первая приемно-передающая радиостанция для связи самолетов с землей. В 1914 г. Н.Д.Папалекси организовал в Петрограде производство радиоламп, а Д.Строгов разработал ламповые усилители для аэротелеграфии. Усилители испытывались в тогдашнем русском городе Ревеле (ныне эстонский г.Таллин) и показали лучшие результаты по сравнению с аналогичными зарубежными. Через некоторое время Д. Строганов получил заказ на изготовление 50 комплектов приемной аппаратуры для самолетов. В иностранных армиях авиационные ламповые радиостанции появились только в период первой мировой войны..
Весной 1918 г. в России работала уже целая сеть из несколько сотен приемных радиостанций, которые были установлены профсоюзом радиоспециалистов. Передачи этой сети осуществляли Ходынская и Царскосельская радиостанции. В второй половине 20-х годов в Красной армии доставшиеся ей от царской армии искровые передатчики заменили на ламповые, конструкции 29 летнего ученого А. Л. Минца, в последующем будущего академика. Новые передатчики работали в среднем и длиноволновом диапазонах. В конце 30-х годов было запрещено применять искровые радиостанции, так как они представляли основной источник радиопомех и мешали работе других радиостанций.
Прогресс в использовании электронных ламп в радиопередатчиках дал возможность в 1920 г. открыть первую радиовещательную станцию в г. Питтсбург (США). Через 2 года на волне 3000 м начала работать московская радиостанция имени Коминтерна с передатчиком мощностью 12 кВт. В этот период зарубежные радиостанции имели мощность только – 1,5 кВт г. Нью-Йорк и 5 кВт г.Парижа. Передатчик московской радиостанции имел 24 радиолампы с водяным охлаждением. Это было необходимо для получения требуемой мощности передатчика. Без охлаждения, лампы могли выйти из строя. Идея ламп с водяным охлаждением принадлежит русскому ученому М. А. Бонч-Бруевичу. Существует легенда, что эта идея пришла к нему во время распития чая, как и положено всякому русскому, у самовара. Конструкция самовара была такою, какая необходима для мощных ламп. В середине раскаленный уголь, это ли не есть подобие лампового катода? Уголь нагревает трубу самовара – это может быть анод? Снаружи – вода, она и забирает тепло горячей трубы и таким образом нагревается. Если у самовара цель нагреть воду, то у лампы наоборот необходимо охлаждать трубку анода, чтобы она не расплавилась. В этом случае не нужны дефицитные тугоплавкие металлы. Такая конструкция ламп с водяным охлаждением дала возможность использовать лампы в радиостанциях большой мощности. Об успехах русской радиоэлектронике заговорили за рубежом. В этот период времени в Западной Европе так же велись работы в области радиовещания, но таких мощных генераторных ламп там не было.
В 1923 г. в Россию приехали немецкие специалисты изобретатель лампового передатчика А. Мейсснер и Георг фон Арко (Gorg von Arko) из фирмы “Telefunken”. Г. фон Арко был совладельцем этой фирмы, которую он создал вместе с известным профессором А. Слаби (A. Slaby). Приехавшие специалисты изучили русские радиостанции и дали им высокую оценку. После возвращения в Германию, в Россию от “Telefunken” пришел заказ на изготовление нескольких генераторных ламп мощностью 25 кВт, в то время мощность немецких ламп была в 5 раз меньше.
Появление мощных генераторных ламп позволило открыть мощную широковещательную радиостанцию и в Италии. В 1924 г. на родине Г. Маркони, заработала радиостанция “Union Radiofonica Italiana”. Со временем радиовещательные станции были построены на всех континентах. Их появление вызвало у некоторых дикторов радиовещания такую радость, что об этом они могли говорить перед микрофон в течение нескольких дней без перерыва. Чилийский диктор Мигель Анхель Наваррете начав 30 июля 1990 года праздничную передачу, посвященную очередной годовщине со дня открытия радиостанции в г. Томе, оставил студию только 8 августа. При этом он проговорил без остановки 113 часов 7 минут, почти 5 дней! В настоящее время радиовещательная сеть покрывает всю планету, охватывая самые отдаленные уголки Земли и принося людям душевный покой. Так в 1991 г., офицер французского флота несший службу на одном островов архипелага Кергелен в Индийском океане отправил со своей радиостанции необычную радиограмму. В ней он жаловался всему миру на свое одиночество. Послание услышала вся планета. В ответ он получил 200 тысяч открыток с сердечными словами поддержки из различных стран.
Применение передатчиков не ограничивалось только радиовещанием. Как всегда, новым изобретением, заинтересовались военные. В армиях различных стран стали использоваться ламповые радиостанции. Ламповые передатчики, приглянулись и метеорологам, в передаче информации о погоде с воздушных шаров. В 1927 г. заведующий Аэрологической обсерватории г. Павловска под Петербургом, П.А. Молчанов запатентовал радиозонд. Через 3 года, три больших шара наполненные водородом, подняли радиоаппаратуру весом 3 кг на высоту 9 км. В течении 35 мин звучали радиосигналы, которые принимал на земле П.А.Молчанов. Сообщения с зондов сразу передавались в Институт погоды в Петербурге и Москву. Образец одного из этих зондов был представлен на Международной выставке воздушного транспорта. Этот экспонат особо отметил известный путешественник Ф.Нансен, который был директором выставки.
Появление полупроводниковых приборов привело к созданию компактных, миниатюрных и экономичных радиопередатчиков. В основу разработки их схем положены идеи изобретателя лампового передатчика А. Мейсснера.. Невзирая на успехи полупроводников, они до сих пор не смогли потеснить радиолампы в генераторах мощных широковещательных радио- и телестанций. Использование полупроводниковых генераторов в радиопередатчиках позволило значительно расширить их область применения. Для выявления миграции дельфинов в мировом океане, ученые Токийского университета используют миниатюрные передатчики, которые прикрепляют на теле животных. Информация о дельфинах сразу посылается на орбитальные спутники, которые ее регистрируют и далее посылают снова на Землю, но теперь уже ученым. Британской фирмой “Remout control sistems incorporated” разработаны так называемые “радиопилюли”. Это сверхминиатюрные передатчики размером меньше 2 см, работающие в диапазоне 390…470 кГц. Они предназначены для измерения температуры от –2000 до 4000 С, контроля давления и кислотности водных сред.. “Радиопилюли” были использованы в ряде клиник для биотермии (измерения температуры) различных проявлений деятельности желудочно-кишечного тракта. Специалисты японской фирмы “Honda” создали специальный передатчик для букстровки автомобилей. На буксирующей машине устанавливается мощшый электромагнитный генератор, а переднем бампере буксируемой - приемник электромагнитных волн. В результате работы генератора и приемника создается мощный, хотя и невидимый “трос”. Такой электромагнитноволновой “трос” позволяет буксировать легковые автомобили со скоростью до 50 км/ч.

Информация взята из сайта http://www.qrz.ru