NAVIGATION
MR-1200RII, MR-1200TII, MR-1200TIII
MR-1000RII, MR-1000TII, MR-1000TIII

Цены и наличие товара Вы можете уточнить здесь 

 

ICOM MR-1200RII, MR-1200TII, MR-1200TIII

MR-1200RII

 

 

 

Описание

Большой TFT дисплей 12” для безопасной навигации в любых условиях

Три типа сканирующих устройств

  • MR-1200RII: максимальная дальность 36 миль, Обтекатель антенны радиолокатора, 4 кВт
  • MR-1200TII: максимальная дальность 48 миль, Антенная решетка открытого типа, 4 кВт
  • MR-1200TIII: максимальная дальность 72 мили, Антенная решетка открытого типа, 6 кВт

Основные функциональные особенности

  • Большой TFT ЖК-дисплей 12.1” (разрешение 600 х 800), небольшой вес (4.3 кг) и глубина корпуса (119.2 мм).
  • Упрощенные функции автоматического отслеживания объектов (ATA).
  • Функции ближайшей точки подхода, времени до ближайшей точки подхода и охранной зоны.
  • Различные режимы индикации, север - вверху, курс – вверху, естественное движение и т.д.

Характеристики

Основные

 

MR-1200RII

MR-1200TII

MR-1200TIII

Минимальная дальность 25м (когда диапазон измерения 1/8 NM)
Максимальная дальность 36NM 48NM 72NM
Требуемый источник питания 10.2–4200мА DC
Потребляемая мощность
(при нулевой скорости ветра)
60Вт (приблиз.) 70Вт (приблиз.) 80Вт (приблиз.)

Экран

 

MR-1200RII

MR-1200TII

MR-1200TIII

Тип дисплея 12.1-inch TFT LCD
Разрешение 600×800 точек
Полный диапазон температуры –15°C до +55°C
+5°F до +131°F
Размеры (Ш×В×Т)
(без учета выступающих частей)
300×323×119.2 мм
Вес (приблиз.) 4.3кг

Сканер

 

MR-1200RII

MR-1200TII

MR-1200TIII

Тип 2ft (60см) обтекатель сканера 4ft (120см) открытый сканнер
Пик выходной мощности 4кВт 6кВт
Скорость вращения 24/36/48rpm
(#02 Версия)

24/36rpm
(#07 Версия)

24/36/48rpm
(#12 Версия)

24/36rpm
(#17 Версия)

22/24/36/48rpm
(#22 Версия)

22/24/36rpm
(#27 Версия)

Ширина лучаГоризонтальная
Вертикальная 22° 25°
Боковой лепесток −18дБ(#02 Версия)
−22дБ (#07 Версия)
−24дБ
Промежуточная частота 60МГц
Частота передачи 9410МГц ±30МГц
Полный диапазон температур −25°C до +70°C
−13°F до +158°F
Размеры
(без учета выступающих частей)
607(ø)×243(H) мм
(#02 Версия)
640(W)×256(H)×640(D) (мм)
(#07 Версия)
1200×381×399 мм
Вес (приблиз.) 8кг
(без кабеля)
17кг
(без кабеля)


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Кабели

OPC-2339

OPC-2339

20м (65.6ft)
Системный кабель
OPC-2340

OPC-2340

30м (98.4ft)
Системный кабель

 

ICOM MR-1000RII, MR-1000TII, MR-1000TIII

MR-1000RII

 

 

 

Описание

Радары серии MR-1000RII, MR-1000TII и MR-1000TIII относятся к классу компактных с 10’’ экраном и дальностью до 36 морских миль (MR-1000RII), до 48 морских миль (MR-1000TII) и до 72 морских миль (MR-1000TIII). Отличаются от предыдущих выпускавшихся моделей наличием функции ATA (Automatic Tracking Aid) с функцией автокалибровки, расширяющей возможности отслеживания обьектов по сравнению с EPA (электронный планшет).

Особенности конструкции.

Выходная мощность радаров — до 4 кВт (MR-1000RII, MR-1000TII) и до 6 кВт (MR-1000TIII). В MR-1000TII и MR-1000TIII используется 120 см открытая волноводная щелевая антенна, которая обеспечивает зону наблюдения от 25 метров до 48 морских миль (MR-1000TII) и до 72 морских миль (MR-1000TIII). В MR-1000RII используется 60 см волноводная щелевая антенна с обтекателем, которая обеспечивает зону наблюдения от 25 метров до 36 морских миль. Скорость вращения антенны — 24, 36, 48 оборотов в минуту. Контрастный монохромный дисплей с восемью градациями зеленого цвета и диагональю 10 дюймов (640х480 точек).

Информация для пользователя.

Формат входных данных NMEA0183, N+1, AUX и формат выходных данных NMEA 0183. Возможно подключение к радару внешнего GPS-приемника и/или компаса. При этом доступно несколько рабочих режимов: «на север» (North-up), «истинное движение» (True Motion), «по курсу» (Course-up) и «по направлению» (Heading-up). Вычисляется скорость судна или другого объекта, координаты и курс. Функция автослежения (ATA ) позволяет строить и прогнозировать траектории движения до 10 объектов с выдачей предупредительных сигналов.


01

Наличие двух электронных пеленгов (курсоров) (Electronic Bearing Lines) и двух маркеров дальности (Variable Range Markers) позволяет следить за двумя объектами одновременно. В дежурном режиме для экономии энергии возможна остановка сканирования и отключение дисплея на определенное время или до появления объекта в зоне наблюдения. В радаре также имеется: автоматическая подстройка и автоматическое усиление сигнала; режим защиты от помех, возникающих от дождя и морских волн; режим демонстрации и режим автокалибровки.


Характеристики

Основные

 

MR-1000RII

MR-1000TII

MR-1000TIII

Минимальная дальность 25м (когда диапазон измерения 1/8 NM)
Максимальная дальность 36NM 48NM 72NM
Требуемый источник питания 10.2–42В DC
Потребляемая мощность 60Вт (приблиз.) 70Вт (приблиз.) 80Вт (приблиз.)

Экран

 

MR-1000RII

MR-1000TII

MR-1000TIII

Тип 10-дюймовый монохромный зеленый CRT
Разрешение 640×480 точек
Полный диапазон температуры −15°C до +55°C
+5°F до +131°F
Размеры (Ш×В×Т)
(без учета выступающих частей)
269×264×258 мм
Вес (приблиз.) 6.5кг

Сканер

 

MR-1000RII

MR-1000TII

MR-1000TIII

Тип 2ft (60см) обтекатель сканера 4ft (120см) открытый сканнер
Пик выходной мощности 4кВт 6кВт
Скорость вращения 24/36/48rpm
(#12 Версия)

24/36rpm
(#17 Версия)

24/36/48rpm
(#12 Версия)

24/36rpm
(#17 Версия)

22/24/36/48rpm
(#22 Версия)

22/24/36rpm
(#27 Версия)

Ширина лучаГоризонтальная
Вертикальная 22° 25°
Боковой лепесток −18дБ (#12 Версия)
−22дБ (#17 Версия)
−24дБ
Промежуточная частота 60МГц
Частота передачи 9410МГц ±30МГц
Диапазон температур −25°C to +70°C
−13°F to +158°F
Размеры (без учета выступающих частей) 607(ø)×243(H) мм
(#12 Версия)
640(W)×256(H)×640(D) (мм)
(#17 Версия)
1200×381×399 мм
Вес (приблиз.) 8кг
(без кабеля)
17кг
(без кабеля)


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Кабели

OPC-2339

OPC-2339

20м (65.6ft)
Системный кабель
OPC-2340

OPC-2340

30м (98.4ft)
Системный кабель

ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АНТЕННЫХ СИСТЕМ
При проектировании и установке радиосредств, предусматривающих одновременную работу как на прием, так и на передачу, наиболее важной задачей является выбор правильной конфигурации антенно-фидерной системы, минимизирующей взаимное влияние передатчика и приемника. Один из способов ее решения и тем самым достижения требуемого качества приема – установка двух разнесенных в пространстве антенн.
В предлагаемой вниманию читателей статье рассматривается более надежный и перспективный способ – установка одной антенны с использованием дуплексного фильтра1.



Использование дуплексных фильтров в антенно-фидерных системах ретрансляторов

В большинстве систем радиосвязи в настоящее время используются расположенные на высоких точках местности (высотные здания, вышки, горные вершины) цифровые ретрансляторы (репитеры), приемник и передатчик которых работают на разнесенных частотах.

Применение дуплексных фильтров в составе
ретрансляторов позволяет:

• уменьшить количество используемых антенн, что немаловажно при установке ретранслятора на небольшом пространстве либо при требовании владельцев здания (вышки) отдельной платы за каждую установленную антенну;

• экономить коаксиальный кабель или установить один более дорогой и высококачественный вместо двух обычных (что, в свою очередь, положительно сказывается на работе системы, особенно при значительной длине фидера);

• снизить вероятность появления помех интермодуляционной природы, уровень внеполосных излучений передатчика;

• улучшить подавление помех приему со стороны близко расположенных передатчиков, которые работают на частотах, достаточно далеких от приемной частоты.


... в антенно-фидерных системах дуплексных радиостанций

Дуплексные радиостанции с использованием разнесенных частот приема и передачи также нуждаются в антенной системе, обеспечивающей одновременную работу приемника и передатчика без взаимных помех. Если для стационарных дуплексных радиостанций, как правило, сохраняется возможность установить раздельные антенны для приема и передачи, то для возимых (тем более носимых) применение дуплексного фильтра – единственный реальный способ работы в режиме полного дуплекса. Это связано с тем, что при допустимых для подвижного объекта габаритах и соответствующем разносе антенн невозможно обеспечить необходимую для нормальной работы изоляцию приемника и передатчика.


Преимущества использования дуплексных фильтров

Система из двух антенн и двух фидерных линий может использоваться и в работе ретранслятора при том условии, что антенны достаточно разнесены и обеспечивают изоляцию между передатчиком и приемником, достаточную для достижения приемлемого уровня качества приема (отсутствие «забития» приемника мощным сигналом собственного передатчика). Однако вследствие множества причин данная схема может быть применена далеко не всегда.
частот, разноса между приемной и передающей частотой, допустимого уровня «забития» приемника и др. Для широко распространенных систем УКВ-радиосвязи ее наиболее типичное значение в пределах 80–105 дБ.

Кроме того, на значение изоляции очень сильное влияние оказывают тип антенн, расстояние между ними (в вертикальной и горизонтальной плоскостях), их диаграмма направленности в обеих плоскостях и взаимная ориентация. Немаловажным фактором является качество кабеля фидерных линий. Совместная прокладка приемного и передающего фидеров с использованием дешевых кабелей с одинарной экранировкой нередко уже изначально приводит к неработоспособности системы, так как изоляция между фидерами оказывается неприемлемой для антенно-фидерной системы в целом.

Как правило, достижение параметров, обеспечивающих качественную работу системы связи с использованием двух раздельных антенн для ретранслятора, может быть проверено только практическим путем. В подобной ситуации целесообразно предварительно оценить стоимость работ и материалов, необходимых для постановки подобного «эксперимента», сопоставив ее с ценой дуплексного фильтра, гарантирующего достижение требуемых параметров. По опыту, использование именно дуплексного фильтра оказывается экономически оправданным.

При установке системы связи на здании или сооружении, где уже имеются какие-либо передающие системы, необходимо предусматривать меры по защите приемника от повреждения или «забития» мощными сигналами посторонних передатчиков. Грамотно подобранный дуплексный фильтр наряду с выполнением своей основной функции способен решить эту проблему.

Существует еще одна причина, которая может оказаться решающей при выборе между системой из двух антенн и системой с дуплексным фильтром, особенно если владелец системы связи не является собственником здания или сооружения, на котором устанавливаются антенны. Как известно, величина изоляции между двумя разнесенными антеннами может изменяться при появлении или исчезновении каких-либо предметов (например, антенны или проводной линии) в непосредственной близости от антенн и привести к ухудшению функционирования системы связи. Поэтому установка дуплексного фильтра, гарантирующего необходимые для нормального функционирования системы параметры, является дополнительной мерой по защите инвестиций в систему связи.

Существуют ситуации, когда для работы системы требуется совместное использование разнесенных антенн и достаточно сложной фильтровой системы. Обычно это связано с очень малым разносом между приемной и передающей частотой на низкочастотных
диапазонах. Подобные случаи требуют тщательного изучения опытными специалистами.


Основные типы дуплексных фильтров

В настоящее время существует множество типов дуплексных фильтров, отличающихся как по конструктивному исполнению и используемым материалам, так и по типам высокочастотных (ВЧ) фильтров, применяемых для достижения необходимых характтруктивным особенностям выглядит следующим образом.

Фильтры на объемных коаксиальных резонаторах (Cavity filters). Чаще всего используются для базового оборудования всех связных диапазонов частот и возимого оборудования UHF/SHF-диапазона. Обычно крупногабаритны, но обладают неплохим соотношением цена–качество.

Фильтры на спиральных резонаторах (Helical filters). Наиболее распространены в возимом оборудовании и как недорогая альтернатива для базового оборудования при большом разносе между частотами приема и передачи.

Фильтры на полосковых линиях и
керамических резонаторах.
Обычно
применяются в носимой или компактной возимой аппаратуре при небольших мощностях передатчиков, а также в особых случаях, когда другие типы фильтров не удовлетворяют разработчика по своим характеристикам (как правило, массогабаритным).

Комбинация ФНЧ и ФВЧ на катушках индуктивности и дискретных конденсаторах. Иногда используется при значительных величинах разноса частот приема и передачи, как правило, при небольших мощностях передатчиков. Рассмотрение этой схемы ввиду специфичности ее применения выходит за рамки данной статьи.


По характеристикам использованных ВЧ-фильтров дуплексные фильтры подразделяются на следующие категории.

Полосовые (BandPass)
, пропускающие сигналы определенного частотного участка с минимальными потерями и ослабляющие сигналы вне этой полосы частот. Ослабление возрастает по мере удаления от центральной частоты, на которую настроен фильтр. Дуплексные фильтры полосового типа лучше всего подходят для систем со средним и большим разносом между частотами приема и передачи. При использовании на малых разносах частот может потребоваться установка дополнительных режекторных фильтров.

Режекторные, или заградительные (Notch или Band Reject), подавляющие сигналы определенной частоты и пропускающие остальные с минимальными потерями. Ослабление быстро уменьшается по мере удаления от центральной частоты.

Режекторный дуплексный фильтр обеспечивает защиту только собственного приемника от мощного сигнала собственного передатчика и практически не влияет на защиту других близко расположенных приемников от внеполосных излучений передатчика. Кроме того, он не предотвращает попадания на выход передатчика сигналов, наведенных другими близко расположенными передатчиками и обусловливающих появление интермодуляционных помех. В связи с этим при установке ретранслятора с режекторным дуплексером в непосредственной близости от других приемопередающих средств может потребоваться установка
дополнительных полосовых фильтров и (или) ферритового изолятора с гармониковым фильтром на выходе передатчика.

Комбинированные (Band Pass/Band Reject), сочетающие в себе характеристики полосовых и режекторных фильтров. Фильтры данного класса имеют несколько фирменных названий, являющихся торговыми марками конкретных производитеьтров этого типа могут использоваться как комбинации отдельных полосовых и режекторных фильтрующих элементов, так и специальные типы резонаторов, имеющие характерную амплитудно-частотную характеристику с ярко выраженными полосами пропускания и режекции, которые в определенных пределах могут независимо перестраиваться. На рис. 3, 4 приведены типичная амплитудно-частотная характеристика и пример конструкции данного типа резонаторов. Настройка частоты режекции производится перемещением диэлектрического плунжера в конденсаторе, а настройка центральной частоты полосы пропускания – центрального плунжера коаксиального резонатора.

Использование дуплексных фильтров комбинированного типа позволяет улучшить качество изоляции между приемником и передатчиком при неизменном количестве типоразмеров резонаторов, а также повысить уровень подавления нежелательных сигналов. Кроме того, по сравнению с дуплексерами полосового типа данный тип обладает лучшими характеристиками при малых разносах частот приемника и передатчика.

К сожалению, попытки производства данной категории изделий в России пока не привели к впечатляющим результатам как по ассортименту, так и по соотношению цена–качество. Все предложения отечественных изделий имеют тенденцию скатываться до двух «крайностей» – либо очень качественные, но непомерно дорогие заказные, выпускаемые на базе оборонных предприятий, либо мелкосерийные, производимые в полукустарных условиях.