NAVIGATION
MR-1200RII, MR-1200TII, MR-1200TIII
MR-1000RII, MR-1000TII, MR-1000TIII

Цены и наличие товара Вы можете уточнить здесь 

 

ICOM MR-1200RII, MR-1200TII, MR-1200TIII

MR-1200RII

 

 

 

Описание

Большой TFT дисплей 12” для безопасной навигации в любых условиях

Три типа сканирующих устройств

  • MR-1200RII: максимальная дальность 36 миль, Обтекатель антенны радиолокатора, 4 кВт
  • MR-1200TII: максимальная дальность 48 миль, Антенная решетка открытого типа, 4 кВт
  • MR-1200TIII: максимальная дальность 72 мили, Антенная решетка открытого типа, 6 кВт

Основные функциональные особенности

  • Большой TFT ЖК-дисплей 12.1” (разрешение 600 х 800), небольшой вес (4.3 кг) и глубина корпуса (119.2 мм).
  • Упрощенные функции автоматического отслеживания объектов (ATA).
  • Функции ближайшей точки подхода, времени до ближайшей точки подхода и охранной зоны.
  • Различные режимы индикации, север - вверху, курс – вверху, естественное движение и т.д.

Характеристики

Основные

 

MR-1200RII

MR-1200TII

MR-1200TIII

Минимальная дальность 25м (когда диапазон измерения 1/8 NM)
Максимальная дальность 36NM 48NM 72NM
Требуемый источник питания 10.2–4200мА DC
Потребляемая мощность
(при нулевой скорости ветра)
60Вт (приблиз.) 70Вт (приблиз.) 80Вт (приблиз.)

Экран

 

MR-1200RII

MR-1200TII

MR-1200TIII

Тип дисплея 12.1-inch TFT LCD
Разрешение 600×800 точек
Полный диапазон температуры –15°C до +55°C
+5°F до +131°F
Размеры (Ш×В×Т)
(без учета выступающих частей)
300×323×119.2 мм
Вес (приблиз.) 4.3кг

Сканер

 

MR-1200RII

MR-1200TII

MR-1200TIII

Тип 2ft (60см) обтекатель сканера 4ft (120см) открытый сканнер
Пик выходной мощности 4кВт 6кВт
Скорость вращения 24/36/48rpm
(#02 Версия)

24/36rpm
(#07 Версия)

24/36/48rpm
(#12 Версия)

24/36rpm
(#17 Версия)

22/24/36/48rpm
(#22 Версия)

22/24/36rpm
(#27 Версия)

Ширина лучаГоризонтальная
Вертикальная 22° 25°
Боковой лепесток −18дБ(#02 Версия)
−22дБ (#07 Версия)
−24дБ
Промежуточная частота 60МГц
Частота передачи 9410МГц ±30МГц
Полный диапазон температур −25°C до +70°C
−13°F до +158°F
Размеры
(без учета выступающих частей)
607(ø)×243(H) мм
(#02 Версия)
640(W)×256(H)×640(D) (мм)
(#07 Версия)
1200×381×399 мм
Вес (приблиз.) 8кг
(без кабеля)
17кг
(без кабеля)


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Кабели

OPC-2339

OPC-2339

20м (65.6ft)
Системный кабель
OPC-2340

OPC-2340

30м (98.4ft)
Системный кабель

 

ICOM MR-1000RII, MR-1000TII, MR-1000TIII

MR-1000RII

 

 

 

Описание

Радары серии MR-1000RII, MR-1000TII и MR-1000TIII относятся к классу компактных с 10’’ экраном и дальностью до 36 морских миль (MR-1000RII), до 48 морских миль (MR-1000TII) и до 72 морских миль (MR-1000TIII). Отличаются от предыдущих выпускавшихся моделей наличием функции ATA (Automatic Tracking Aid) с функцией автокалибровки, расширяющей возможности отслеживания обьектов по сравнению с EPA (электронный планшет).

Особенности конструкции.

Выходная мощность радаров — до 4 кВт (MR-1000RII, MR-1000TII) и до 6 кВт (MR-1000TIII). В MR-1000TII и MR-1000TIII используется 120 см открытая волноводная щелевая антенна, которая обеспечивает зону наблюдения от 25 метров до 48 морских миль (MR-1000TII) и до 72 морских миль (MR-1000TIII). В MR-1000RII используется 60 см волноводная щелевая антенна с обтекателем, которая обеспечивает зону наблюдения от 25 метров до 36 морских миль. Скорость вращения антенны — 24, 36, 48 оборотов в минуту. Контрастный монохромный дисплей с восемью градациями зеленого цвета и диагональю 10 дюймов (640х480 точек).

Информация для пользователя.

Формат входных данных NMEA0183, N+1, AUX и формат выходных данных NMEA 0183. Возможно подключение к радару внешнего GPS-приемника и/или компаса. При этом доступно несколько рабочих режимов: «на север» (North-up), «истинное движение» (True Motion), «по курсу» (Course-up) и «по направлению» (Heading-up). Вычисляется скорость судна или другого объекта, координаты и курс. Функция автослежения (ATA ) позволяет строить и прогнозировать траектории движения до 10 объектов с выдачей предупредительных сигналов.


01

Наличие двух электронных пеленгов (курсоров) (Electronic Bearing Lines) и двух маркеров дальности (Variable Range Markers) позволяет следить за двумя объектами одновременно. В дежурном режиме для экономии энергии возможна остановка сканирования и отключение дисплея на определенное время или до появления объекта в зоне наблюдения. В радаре также имеется: автоматическая подстройка и автоматическое усиление сигнала; режим защиты от помех, возникающих от дождя и морских волн; режим демонстрации и режим автокалибровки.


Характеристики

Основные

 

MR-1000RII

MR-1000TII

MR-1000TIII

Минимальная дальность 25м (когда диапазон измерения 1/8 NM)
Максимальная дальность 36NM 48NM 72NM
Требуемый источник питания 10.2–42В DC
Потребляемая мощность 60Вт (приблиз.) 70Вт (приблиз.) 80Вт (приблиз.)

Экран

 

MR-1000RII

MR-1000TII

MR-1000TIII

Тип 10-дюймовый монохромный зеленый CRT
Разрешение 640×480 точек
Полный диапазон температуры −15°C до +55°C
+5°F до +131°F
Размеры (Ш×В×Т)
(без учета выступающих частей)
269×264×258 мм
Вес (приблиз.) 6.5кг

Сканер

 

MR-1000RII

MR-1000TII

MR-1000TIII

Тип 2ft (60см) обтекатель сканера 4ft (120см) открытый сканнер
Пик выходной мощности 4кВт 6кВт
Скорость вращения 24/36/48rpm
(#12 Версия)

24/36rpm
(#17 Версия)

24/36/48rpm
(#12 Версия)

24/36rpm
(#17 Версия)

22/24/36/48rpm
(#22 Версия)

22/24/36rpm
(#27 Версия)

Ширина лучаГоризонтальная
Вертикальная 22° 25°
Боковой лепесток −18дБ (#12 Версия)
−22дБ (#17 Версия)
−24дБ
Промежуточная частота 60МГц
Частота передачи 9410МГц ±30МГц
Диапазон температур −25°C to +70°C
−13°F to +158°F
Размеры (без учета выступающих частей) 607(ø)×243(H) мм
(#12 Версия)
640(W)×256(H)×640(D) (мм)
(#17 Версия)
1200×381×399 мм
Вес (приблиз.) 8кг
(без кабеля)
17кг
(без кабеля)


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Кабели

OPC-2339

OPC-2339

20м (65.6ft)
Системный кабель
OPC-2340

OPC-2340

30м (98.4ft)
Системный кабель

Как и куда распространяются радиоволны
Чем длиннее, тем дальше

Каждый раз, когда вы беретесь за ручку настройки радиоприемника и отправляетесь в путешествие по эфиру, перед вами открывается удивительный мир странствий, интересных и совсем не опасных приключений. Единственным их результатом будет расширение ваших знаний и кругозора.

Для обычного путешествия, как известно, нужны карта, компас (а лучше, спутниковый карманный приемник-навигатор - такие уже имеются), еще немного туристического снаряжения и элементарные знания и навыки. Для путешествия по эфиру, не выходя из дома, нужно все то же самое: снаряжение - радиоприемник, карта и "компас", справочник по радиостанциям мира и, конечно, знания и навыки. Как раз то, о чем мы сегодня собираемся поговорить.

Бесполезно искать ночью иголку в стоге сена, как бесполезно днем, находясь на территории России, искать в эфире американские радиостанции на средних волнах, хотя найти их можно ночью и днем. Итак, все наше многословие свелось к одному: вращая ручку настройки приемника, полезно хотя бы немного знать о распространении радиоволн на Земле.

Последней фразой я хотел подчеркнуть, что в Космосе все гораздо проще. Радиоволны, как и световые, и другие электромагнитные волны, распространяются прямолинейно. Они стараются это делать и на Земле, но она-то, как справедливо заметили еще средневековые ученые, круглая, и дальше горизонта на ней ничего не видно! Какой же смелостью надо было обладать Колумбу, а затем и Магеллану, чтобы экспериментально, собственным путешествием доказать сферичность Земли!

Трудно сравнивать, но изрядной смелостью обладал и Маркони, когда не прошло и десятилетия после первых успешных опытов Генриха Герца, Оливера Лоджа и Александра Попова по передаче и приему радиоволн, а он уже поставил целью послать радиосигналы через Атлантический океан. Были натянуты гигантские по тем временам проволочные антенны, построены мощные передатчики. И такая связь между побережьями Англии и Канады была впервые осуществлена в 1903 г. Успех был огромен, хотя всего-то и принято было достоверно три телеграфных тире.

В те годы уже было экспериментально, т. е. методом проб и ошибок, установлено, что чем длиннее волна, тем дальше она распространяется. Первую трансатлантическую связь провели на сверхдлинных волнах. Отсюда и применение гигантских антенн - ведь длина волны первых примитивных радиопередатчиков прямо зависела от длины антенны. Кроме того, чтобы антенна эффективно излучала, ее длина должна быть хотя бы порядка четверти длины волны. Тогда же необходимо было объяснить факт зависимости дальности распространения от длины волны явлением дифракции. Упрощенно говоря, дифракция - это огибание волной препятствия, а препятствием является высота шарового сегмента Земли, разделяющего приемную и передающую радиостанции (рис. 16). От Санкт-Петербурга до Москвы, как известно, около 600 км. Расчет дает высоту шарового сегмента h около семи километров, следовательно, длинные, километровые волны распространяются на такие расстояния.


У читателя может возникнуть вопрос: а как определить длину волны? Прежде ее обозначали в метрах прямо на шкале приемника, а теперь все чаще в килогерцах и мегагерцах (соответствующих длине волны), а уж современные цифровые шкалы и подавно измеряют только частоту. Длина волны l и частота колебаний f радиопередатчика обратно пропорциональны и связаны через скорость распространения радиоволн - c, такую же, как и скорость света: l= c/f. Практически, чтобы узнать длину волны в километрах, надо 300 разделить на частоту в килогерцах. Например, московская длинноволновая радиостанция на частоте 171 кГц (бывшая имени Коминтерна) имеет длину волны около 1,75 км. Ее можно слушать почти на всей территории европейской части России круглосуточно. Увлечение длинными волнами на заре радиотехники породило великую эпоху Радиостроя, когда антенны становились все выше, а радиостанции все мощнее. В 30-е годы радиостанция им. Коминтерна была самой мощной в Европе, излучая до 500 кВт, и ее слушали на детекторные приемники в самых глухих и отдаленных деревнях.

Радиостанций становилось все больше, и они стали создавать помехи друг другу. Здесь надо заметить, что при передаче радиовещательной программы станция занимает в эфире не одну частоту, а целую полосу частот шириной до 20 кГц. В справочниках указывают центральную частоту этой полосы, называемую несущей частотой, или просто несущей. Именно эту частоту и генерирует высокочастотный, или, как его называют, задающий генератор передатчика. Затем его колебания усиливаются и модулируются колебаниями звуковых частот.

В 30-е годы было достигнуто соглашение - установить разнос частот радиостанций в 9 кГц. Оно соблюдается и поныне. Теперь легко сосчитать, что на длинных волнах, в участке, отведенном для радиовещания (примерно от 150 до 400 кГц), можно разместить не более двух с половиной десятков радиостанций.

Со временем стали строить средневолновые радиостанции - в этом диапазоне около 120 частотных каналов, но и дальность распространения меньше, поскольку длина волны короче ( вспомните про дифракцию). Поэтому один и тот же частотный канал стали отводить нескольким, достаточно удаленным друг от друга радиостанциям. В дневное время они не создавали помех друг другу. Иное дело ночью, дальность распространения длинных и средних волн намного возрастала и становились слышны радиостанции, удаленные на несколько тысяч километров. Резко возрастали и взаимные помехи. Отчего это?

Ученые уже имели рабочую гипотезу. Высказал ее Оливер Хевисайд, чудаковатый английский джентльмен, чопорный и безукоризнено одетый, когда появлялся на людях. Но делать он этого не любил, а любил работать по ночам в жарко натопленной комнате и с наглухо занавешенными окнами. Говорят, что когда его избрали действительным членом Королевского Общества (по-нашему - Академии наук) и пригласили на торжественную церемонию избрания (черные мантии, головные уборы с четырехугольным верхом), он не нашел гинеи (а такой символический взнос надо было уплатить) и просто не пошел на заседание! К чести общества надо сказать, что оно все-таки избрало Хевисайда не действительным, но почетным членом, при этом не требовалось ни его присутствия, ни гинеи.

Так в чем же состояла гипотеза?

3.2. Жизнь преподносит сюрпризы!

Пока шла драка за распределение частот на длинных и средних волнах, короткими никто не интересовался, они считались просто непригодными для дальней радиосвязи и за ненадобностью были отданы... радиолюбителям. А такие уже были в начале двадцатых годов. Ведь и радиосвязь, и наблюдение за сигналами радиостанций - это очень интересно! И вот, от радиолюбителей стали поступать сенсационные сообщения: с помощью простейших передатчиков мощностью в несколько ватт и примитивных приемников устанавливались связи на десятки тысяч километров! Такой феномен уже нельзя объяснить дифракцией.

Тут-то и вспомнили гипотезу Хевисайда: верхние слои атмосферы должны быть ионизированы солнечным излучением. Ионизированный газ (ионосфера) содержит много свободных электронов и может проводить электрический ток, а значит, должен отражать радиоволны. Скорые на подъем американцы соорудили импульсный передатчик, и в 1924 г. инженеры Брейт и Тьюв получили отражение от ионосферы при вертикальном зондировании и измерили время запаздывания отраженного импульса, а по нему вычислили высоту отражающего слоя.

Ионосферу долгое время называли слоем Хевисайда. Позднее Эпплтон, анализируя отраженные сигналы, обнаружил, что отражающих слоев несколько. Ему же мы обязаны и названиями слоев. В своих расчетах он обозначил вектор напряженности электрического поля, как это обычно и делается, буквой Е. Когда же понадобилось обозначить поле другого отражения, он выбрал следующую букву алфавита - F. Убедившись, что отражения идут от разных слоев, он решил, что и названия им готовы - Е и F, при этом имея в виду, что в дальнейшем могут быть открыты и другие слои, для которых пригодятся и предыдущие, и последующие буквы алфавита. Это предвидение вполне оправдалось. Теперь известно, что в летний полдень можно наблюдать, по крайней мере, четыре четко различимых слоя. Самый нижний, слой D на высоте около 70 км, существует только днем. Слой E на высоте 90...120 км существует круглосуточно, лишь ночью в нем уменьшается электронная концентрация (Солнце-то, причина ионизации, не светит!) и увеличивается высота. То же, но в меньшей степени, происходит и со слоем F, но он расположен значительно выше - 200...250 км. Днем он распадается на два слоя - F1 и F2.

Информация взята из сайта http://www.chipinfo.ru