AIS
MA-500TR
MXA-5000

Цены и наличие товара Вы можете уточнить здесь

ICOM MA-500TR

MA-500TR

 

 

 

Описание

Полнофункциональный AIS транспондер класса B для прогулочных и рыболовецких судов

AIS транспондер класса B для судов любого типа

  • Уровень выходной мощности 2 Вт
  • Двух канальный AIS приемник

Большой точечный ЖК-дисплей для отображения данных о трафике судов в режиме реального времени

  • Не требует подключения персонального компьютера и другого морского сетевого оборудования. Однако, подключение такого оборудования предусмотрено.

Соответствие стандарту водонепроницаемости IPX7

  • Погружение в воду на 1 метр на время до 30 минут

Три линии входов/выходов NMEA0183

GPS приемник в комплекте

Функции предупреждения столкновений

  • Список объектов и список опасных объектов
  • Сигнализация опасного сближения
  • Сигнализация опасного сближения на внешний громкоговоритель на палубе или мачте
  • Индикация CPA (ближайшей точки подхода) и TCPA (времени до ближайше точки подхода)

Интеграция с VHF трансиверами ICOM (IC-M604 и IC-M504)

  • Кнопка DSC позволяет осуществлять индивидуальный вызов выбранного судна.
  • Идентичный дизайн с другим оборудованием ICOM

Характеристики

Основные

 

MA-500TR

Рабочие частоты 161.975МГц, 162.025МГц
(Ch 87B, 88B, значение по умолчанию)

156.025–162.025МГц

Тип излучения 16K0GXW (GMSK)
Импеданс антенны 50Ом
Диапазон температур –20°C до +60°C;
–4°F до +140°F
Требуемый источник питания 12V DC (9.6–15.6В)
Потребляемый ток
(на 12.0V DC)
Tx 1.5A
Rx 0.7A
Размеры (Ш×В×Т)
(без учета выступающих частей)
165×110×123 мм;
6.5×4.33×4.84
Вес (приблиз.) 1.0кг; 2.2lb

 

Передатчик

 

MA-500TR

Выходная мощность 2Вт
Модуляция GMSK
Проводимая побочная эмиссия Менее –36dBm

 

Приемник

 

MA-500TR

Чувствительность (20% коэффициент ошибок) –110dBm (AIS/DSC)
Смежная селективность каналов Более 70дБ (AIS/DSC)
Ложный ответ Более 74dB (AIS)
Более 70дБ (DSC)
Интермодуляция Более 65дБ (AIS/DSC)
Проводимая побочная эмиссия Менее –57dBm (AIS)

 

Интерфейс передачи данных

 

MA-500TR

Интерфейс ввода данных NMEA1, NMEA3:
IEC 61162-1:2000 (4,800bps)
или IEC 61162-2 (38,400bps)

NMEA2:
IEC 61162-2 (38,400bps)

Формат предложения (характерный для NMEA1–3):
RMC, GGA, VTG, GSA, GSV,
DTM, GNS, GLL, and GBS*1

Уровень входного сигнала (2V прикладной):
Менее 2мА

Интерфейс вывода данных NMEA1, NMEA3:
IEC 61162-1:2000 (4,800bps)
или IEC 61162-2 (38,400bps)

NMEA2:
IEC 61162-2 (38,400bps)

Формат предложения:
NMEA1:
DSC, RMC, GGA, VTG, GSA, GSV,
GBS, DTM, DSE, GNS and GLL

NMEA2:
VDM, VDO, ALR, ACA, ACS, TXT,
RMC*2, GGA*2, GNS*2, GLL*2, VTG*2,
GSA*2, GSV*2, GBS*2 and DTM*2

NMEA3:
RMC, GGA, VTG, GSA, GSV,
GBS, DTM, GNS, and GLL

Уровень на выходе:
5В, 40мА Макс.
RS-422 сбалансированный тип

Аварийное оповещение терминала 24В DC, 500мА max.

 

*1 Чтобы использовать сторонний GPS-приемник с MA-500TR, требуется GPS-приемник с функцией RAIM.
*2 В зависимости от настройки выходного AIS.



Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Опции

Монтажное крепление

MB-75

MB-75


 

ICOM MXA-5000

MXA-5000

 

 

 

Описание

Превосходный AIS приемник для сбора данных о местонахождении судов в режиме реального времени

Одновременный прием данных в двух каналах

MXA-5000 способен принимать данные в канале 87B (161.975 МГц) и 88B (162.025 МГц) одновременно. Такое двойной прием позволяет MXA-5000 собирать данные от любых AIS транспондеров функционирующих хотя бы в одном канале. MXA-5000 способен принимать AIS данные класса А и B.

Двойной режим подачи данных

Приемник MXA-5000 снабжен двумя выходами. Первый выход - стандарта RS-422 предусматривает подключение, например, морского радара или электронного GPS планшета. Такие устройства должны поддерживать прием данных в VDM последовательностях для отображения AIS данных на дисплее. Второй выход - стандарта RS-232C для подключения ПК с программным обеспечением AIS планшета. Вы можете контролировать AIS трафик на дисплее компьютера при использовании MXA-5000.

Встроенный антенный делитель для использования одной антенны

Приемник MXA-5000 может быть включен между VHF трансивером и VHF антенной. В режиме приема MXA-5000принимает AIS данные. В режиме передачи сигнал отключает приемную схему MXA-5000 и излучается в эфир.

Интеграция GPS данных

Если GPS приемник подключен к MXA-5000, то позиционные GPS данные интегрируются в форматы RMC, GGA, GNS и GLL для подачи на внешние устройства и упрощения всей коммуникационной системы судна.

Характеристики

Основные

 

MXA-5000

Диапазон частот 161.975МГц (Ch 87B) и
162.025МГц (Ch 88B)
принимаются одновременно
Требуемый источник питания 12.0В DC (10.8–15.6В)
Потребляемый ток (12.0В DC) 0.25A
Размеры
(без учета выступающих частей; Ш×В×Т)
131.6×33.5×154.5 мм;
5.18×33.5×6.08
Вес (приблиз.) 400г; 14.1oz
С монтажными креплениями 460г; 1.0lb

Приемник

 

MXA-5000

Чувствительность –116dBm
Внеполосовой прием Более 70дБ

Интерфейс передачи данных

 

MXA-5000

Интерфейс ввода данных IEC 61162-1:2000 (4,800bps)
 Формат предложения RMC, GGA, GNS, GLL
Уровень на входе Менее 2мА (При 2В)
Интерфейс вывода данных IEC 61162-2 (38,400bps)
 Для навигационного оборудования RS-422 сбалансированный
 Формат предложения VDM
Уровень на выходе 5В, 40мА Макс.
To PC RS-232C несбалансированный
 Формат предложения VDM
Уровень на выходе ±5В, ±35мА

Измерения, выполненные в соответствии с IEC 62287-1.
Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.


Радио... Радио... Радио...
Подлинную революцию в штурманском деле совершило изобретение радио и использование его для решения навигационных задач.
RADIO -по латыни - испускающий лучи.
25 апреля 1895 года А.С. Попов (1859-1906), применив антенну и использовав усовершенствованный им когерер, за 5 лет до этого изобретенный французом Э. Бранли, демонстрировал свой "грозоотметчик" - первый в мире радиоприемник. Эх, если бы он запатентовал свое изобретение, тогда Александр Степанович был официально признанным отцом радио! Хотя мы его все равно любим, как родного.
29 марта 1899 года Г. Маркони принял сигнал посланный через Ла-Манш с помощью аппаратуры сконструированной тем же Э. Бранли, а спустя 2 года этот Г. принял первую трансатлантическую передачу радиосигналов, не забыв взять патент.
Радионавигационные устройства позволяют определять место судна, пользуясь результатами измерений направлений и/или расстояний от радиопередатчиков, положение которых известно.
На возможность создания радиомаяков для навигационных целей указал еще А.С. Попов.
В 1906-1907 г.г. Н.Н. Матусевич использует радиосигналы времени для определения долготы, а Н.Д. Папалекси начал опыты по радиопеленгации.
И этот опыт активно использовался в первой мировой войне.
В 20-х годах М.А. Бонч- Бруевич создает мощные генераторные лампы и о том, что в России началась новая эра услышали даже в Аргентине и Бразилии, а позже создает прототип радиодальномера.
В1925-1935 г.г. академики Л.И. Мандельштам и Н.Д. Папалекси создали теорию фазового метода дистанционных определений, а проф. Е.А. Щеголев конструирует первый радиодальномер.
Первый радар появился в 1934 году (американец Р. Пейдж), к сожалению намного позже трагедии на "Титанике".
На смену традиционным навигационным приборам пришли:
Радиокомпас,
Радиодальномер,
Радиосекстант (он фиксирует радиоизлучения светил и по ним определяет угловые расстояния),
Радар (позволяет "видеть" вокруг корабли, (самолеты), очертания береговой линии и т. д.),
Радиолот ("видит" очертания дна, иначе эхолот) и конечно
Навигационные приемники способные определять геодезические координаты места по радиосигналам.
"Погоду" в навигации, стала делать авиация!
В 40 - 60-х годах создают фазовые и импульсно-фазовые системы радионавигации. Сверхмощные передатчики от нескольких сотен до нескольких тысяч киловатт, огромные антенны от 250 до 450 метров. Такие системы "были по плечу" только двум странам в мире (догадайтесь каким? - ответ смотрите здесь). Соответственно: у них LORAN-А, у нас "Меридиан"; у них OMEGA, у нас "Альфа"; у них LORAN-С, а мы им ответили "Чайкой".
1957 год - запуск первого искусственного спутника Земли открыл новую страницу в развитии методов навигации.
Начало 70-х годов характерны не только тем, что появились хиппи и мода на рваную джинсовую одежду расшитую цветами, а скорее появлением спутниковых навигационных систем первого поколения.
Зачем "греть" атмосферу сверхмощными передатчиками, ломать голову о влиянии на распространение длинных радиоволн лесов и вечной мерзлоты, магнитных бурь и вспышек на Солнце, подвижек тектонических плит, и прочая, прочая - Устанавливаем маломощный передатчик излучающий в диапазоне сотен мегагерц на спутник, запускаем несколько спутников на расчетные орбиты примерно в 1000 км от Земли и навигационная система к Вашим услугам! У них TRANSIT, у нас "Цикада"...
Правда все это напоминает гонку. Времена были "холодные", а гонка была - вооружений!
А кто же победил? Прогресс в области навигации был налицо. Точность местоопределения с 1,8 морских мили при астрономических методах навигации, сократилась до 0,8 миль при использовании фазовых систем (OMEGA, "Альфа") и 0,25 миль при использовании импульсно-фазовых систем (LORAN-C , "Чайка"), а первые спутники уже обеспечивали 0,1 милю. При радиообсервации влияние погоды, времени суток минимально, а сравнивать скорость вычисления координат астро и радио методами, тоже, что работу на счетах и калькуляторе.
Однако зоны действия этих радиосистем были ограничены, да и точности к 80-м годам стали недостаточны.
"Кто на море не бывал, тот и горя не видал" - это про погоду. Старые морские волки по приметам определяли надвигающийся шторм или штиль. С появлением радио метеопрогнозы стали передавать регулярно. Первый советский метеорологический спутник был запущен в 1966 году на круговую орбиту высотой 625 км, а с 1969 года спутники серии "Метеор", а позже "Метеор - Природа" , стали регулярно передавать на Землю снимки облачных образований, следить за образованием атмосферных процессов (циклонов, ураганов) и т.п.
Герои Жюля Верна бросали в море бутылку с запиской и могли надеяться только на чудо. Сигналы SOS с терпящих бедствие кораблей и самолетов слышны на расстояниях в несколько сот километров, а радиобуи самолетов и того меньше, но ведь мало отстучать ...---... нужны еще координаты?
В 70-х годах вышли на орбиту спутники международной системы КОСПАС-САРСАТ - космической системы обнаружения терпящих бедствие. Аварийный буй пеленгуется спутниками и по каналам связи информация передается в центры поисково-спасательных служб района бедствия. В наше время детям капитана Гранта не пришлось бы объезжать полмира в поисках отца!
В конце 70-х годов в США и СССР развернулись работы по созданию среднеорбитальных спутниковых навигационных систем. По проекту -24 спутника, вращаясь на 3-х взаимоперпендикулярных орбитах в 20000 км от Земли, должны обеспечивать навигацию в любой точки Земли, в любое время суток. Поистине навигация становится глобальной, что и нашло отражение в названиях этих систем ГЛОНАСС (наша) и GPS (США). Передатчики излучают сигналы в диапазоне единиц ГГц, что позволяет проектировать миниатюрные, а следовательно, недорогие приборы, обеспечивающих точность обсервации в единицы метров.
Мало того, на спутниках этих систем размещаются высокостабильные атомные стандарты частоты и времени, которые корректируются с Земли по сигналам государственного эталона частоты и времени. Таким образом, передача сигналов точного времени также стала глобальной и доступной большому кругу потребителей, укрепив тем самым, неразрывность понятий навигации и времени!
Уходящий ХХ век подарил нам Internet, а до него - электронную почту e-mail, хотя для многих из Ва одно неотделимо от другого! Навигатором стали называть программу для компьютера.
Философы утверждают, что XXI век будет веком информации. Это не означает, что не будет книг, театров, кино..., нет - просто в нашей жизни информация будет играть все большую, если не основную роль, а Internet, очевидно, будет основным ее поставщиком.
Уже сегодня, используя Internet, Вы можете: общаться, учиться, развлекаться, работать. Возможно, Вы уже делали покупки через Internet?
Электронная коммерция развивается стремительными темпами. Электронные биржи, банковские расчеты, частные покупки, все это - не выходя из комнаты или автомобиля, а может самолета. Сегодня в качестве Вашего инструмента - компьютер, завтра специальный сотовый телефон-коммуникатор, а может компьювизор (компьютел), впрочем, я не знаю, как назовут прибор объединяющий в себе функции телевизора, компьютера, модема и телефона, в который будет встроен спутниковый навигационный приемник...
А время в Internet будет конечно электронное и конечно Гринвичское! С 01.01.2001 года английским правительством будет официально объявлено о новом стандарте времени Greenwich e-time GET, который будет использоваться для обеспечения глобальных электронных платежей (транзакций) через Internet!
Ну, а что дальше?
Очевидно, что будут продолжать развиваться навигационно-информационные технологии управления движением транспорта не только морского и воздушного, но и наземного. О чем идет речь? Для многих из Вас уже стало достаточно привычным есть бананы из Африки, а в апреле - свежие яблоки из Бразилии, ездить на каникулы в другие страны, слушать MP3 -записи или смотреть DVD- видео на проигрывателях из Сингапура и т.д. И все это нужно привозить или доставлять вовремя и обязательно безопасно! А достигнуть этого можно, объединяя спутниковые навигационные приборы, системы связи и электронные карты.
Персональная навигация - это не сказка это реальность! Навигационные приемники встраивают в автомагнитолы, а электронную карту города, (района, страны) устанавливают в проигрыватель лазерных дисков. "Как быстрее проехать в нужное место?" Где ближайшая бензоколонка?: - "Пожалуйста, следуйте указаниям бортового компьютера"!
А помните сказку "Маша и медведи"? Да, будь у Маши спутниковый навигационный приемник с электронной картой местности (а такие уже есть и даже встроенные в сотовый телефон), она бы не заблудилась, но и медведи не познали бы ее кулинарного искусства...

Информация взята из сайта http://www.rirt.ru