Цены и наличие товара Вы можете уточнить здесь

Ретранслятор IC-FR3100/FR4100 >>
Ретранслятор IC-FR3000/FR4000 Снят с производства >>
Kenwood TKR-750/850
Kenwood TKR-820M


Ретранслятор IC-FR3100/FR4100


  • Многофункциональность - фирма ICOM Inc. начинает выпуск принципиально новых моделей ретрансляторов, оснащенных всеми необходимыми функциями для построения систем связи любого уровня сложности. Ретранслятор позволяет работать в транковых системах SmarTrunk II, LTR, MPT-1327 и, помимо этого, может использоваться в качестве стационарной станции. Стабильность и надежность - высокую надежность ретранслятора при 100% цикле работы с максимальной выходной мощностью 50 Вт обеспечивают 2 встроенных вентилятора, радиатор (корпус ретранслятора), а также стабильный усилитель мощности. Настройка и управление - 16-ти символьный ЖК-дисплей, ручки управления на передней панели и программируемые кнопки. Каждой кнопке может быть присвоена одна из многочисленных функций: установка уровня мощности, вызов абонента, сигнал тревоги, включение скремблера. Сигналинг - встроенные кодеры/декодеры 2/5-ти тоновой системы, DTMF, CTCSS (тональный шумоподавитель), DTCS (кодовый шумоподавитель) расширяют возможность построения сигнальных систем, обеспечивают управление ретранслятором и избирательный вызов абонента.

    32 канала памяти.

    Горячее резервирование.

    Встроенный источник питания от сети 220 В. В качестве источника резервного питания может использоваться внешний аккумулятор.

    Встроенный телефонный интерфейс.

    Дистанционное управление по радиоканалу и телефонной линии. Дополнительно инсталируются модули маскиратора речи UT-109 и UT-110, внутренний дуплексер и изолятор. Удобство монтажа - ретранслятор ICOM предназначен для настольной установки. Монтажные устройства позволяют установить ретранслятор в 19-ти дюймовую стойку (МВ-78) и закрепить его на стене (МВ-77). Программирование основных функций осуществляется с персонального компьютера.

Технические характеристики ретрансляторов
Спецификация FR-3100 FR-4100
Общие
Диапазон частот 136-150 МГц, 150-174 МГц 400-430/430-450 МГц, 450-480 МГц
количество каналов 32
Шаг сетки частот 25 або 12,5 (5 або 2,5)
Рабочая температура -30..+60
габаритные размеры , мм 410х110х360 мм
вес, кг 12
Напряжение питания 13.8 В
Ток потребления:  
Передача Hi (Low)/прием/ожидание 15/2/1 A 15/2/1 A
Передатчик
Выходная мощность

25 Вт
Уровень побочных излучений -70 дБ
Излучения по соседнему каналу -60 дБ @ 25 кГц, -70 дБ @ 12.5 кГц
Приемник
Чувствительность (12дБ SINAD) 0.5 мкВ
Избирательность по соседнему каналу 60 дБ @ 25 кГц, 70 дБ @ 12.5 кГц
Интермодуляция 70 дБ
Звуковая мощность 2.5 Вт

 

Ретранслятор IC-FR3000/FR4000


  • 50 Вт - 100% цикл работы


Ретранслятор рассчитан на непрерывный цикл работи. Для охлаждения и отведения тепла - предусмотрены два вентилятора, которые расположены на задней панели;

  • Встроенный блок питания от сети 220В с автоматическим переключением на питание от резервного аккумулятора;
  • Устроена система субтонального вызова CTCSS и DCS


До 16 CTCSS/DCS тонов возможно запрограммировать в канале.Эта особенность позволит использования одного ретранслятора несколькими группами пользователей;

  • Устроена система 2-тонального, 5-тонального, DTMF кодировки и декодирования;
  • В корпусе ретранслятора предусмотрено место для расположения дуплексора;
  • Совместимость с телефонным интерфейсом;
  • Возможность контроля ретранслятора дистанционно по радио или по телефонной линии, рассчитанной на работу в DTMF режиме;
  • Опциональне крепления на стену МБ -77або крепление 19" для монтажа в шкаф, МБ -78

 

Технические характеристики ретрансляторов
Спецификация FR-3000 FR-4000
Общие
Диапазон частот, МГц 148-174 400-430/450-470
количество каналов 32
Шаг сетки частот кГц 25 або 12,5 (5 або 2,5)
Рабочая температура С -30..+60
габаритные размеры , мм 410x110x360
вес, кг 12
Напряжение питания  
Ток потребления: 20
дежурном режиме 1
приема 2
Передатчик
Выходная мощность, Вт 50
Уровень побочных излучений dBc 70
Излучения по соседнему каналу, дБ 70
Приемник
Чувствительность, мкВ при 12 db SINAD 0,25
Избирательность, дБ при шаге 25кГц 70
Избирательность, дБ при шаге 12,5кГц 60
притеснение паразитарных излучений, дБ 70
интермодуляционная выборочность , дБ 70
выход аудио, W 2,5
Функциональные особенности
CTCSS енкодер +
CTCSS декодер +
DCS енкодер +
DCS декодер +
2-тоновый енкодер +
2-тоновый декодер +
5-тоновый енкодер +
5-тоновый декодер +
DTMF енкодер +
DTMF декодер +
MPT-1327 +
SmarTrunk-II +
LTR +
Сремблер SC-400, UT-109, UT-110
Дистанционное управление Да

 


Kenwood TKR-750/850

 

Kenwood TKR-750/850
  • Ретранслятор (146-174/440-470 МГц)
  • 25 Вт при 100% цикла
  • 16 полнодуплексных каналов
  • функция QT/DQT и DSP
  • флэш-память
  • программируемая полоса пропускания
  • высокая стабильность частоты
  • порт внешнего управления


Kenwood TKR-820M

 

Kenwood TKR-820M
  • настольный ретранслятор (450-470)
  • 15 Вт мощность ТХ
  • 25 КГц шаг





РАДИОСВЯЗЬ КАК ТАКОВАЯ
К середине 90-х годов XIX века уже существовали основные элементы, требующиеся для практической реализации системы передачи сигналов посредством электромагнитных волн: катушка Румкорфа, вибратор Герца, когерер Лоджа. Над реализацией системы передачи работало множество исследователей. Однако только Попов и Маркони осуществили первые попытки увеличить расстояние между передатчиком и приемником, постепенно усовершенствуя разрядник и когерер и повышая эффективность системы с помощью антенны и заземления.

Первая публичная демонстрация приемника Попова состоялась во время его доклада «Об отношении металлических порошков к электрическим колебаниям» 7 мая (25 апреля по старому стилю) 1895 г. на заседании Физического отделения Русского физико-химического общества в Санкт-Петербургском университете.
Попов был не только одним из первых в России, как выразился Столетов, «пропагатором герцологии», но и тем, кто впервые оценил практическое значение открытий Герца и начал искать пути их технического использования.

Детектором электрических колебаний в приемнике Попова был когерер Брэнли–Лоджа. В свое время Брэнли писал: «Устройство можно вернуть в состояние плохой проводимости слабыми отрывистыми ударами по дощечке, которая поддерживает трубку». Лодж говорил: «Этот прибор, который я называю когерером, удивительно чувствителен как детектор герцевских волн». В опытах Лоджа когерер «чувствовал» влияние искры на расстоянии 40 ярдов (37 м). Лодж применял различные способы приведения когерера в рабочее состояние, в том числе и с помощью звонка смонтированного на одной доске с когерером. Однако Лодж не додумался до использования звонка в качестве регистратора поступившего сигнала и одновременно автомата для приведения когерера в рабочее состояние. Это сделал Попов.

Можно сказать, что это был первый случай использования в радиотехническом устройстве электромеханической обратной связи. Кроме того Попов впервые применил антенну для улавливания электромагнитных волн.

Используя в своем устройстве уже существующие изобретения и частично их усовершенствовав, Попов построил прибор, который позднее получил название «грозоотметчик», имея в виду его применение для регистрации грозовых разрядов.

В своей статье «Прибор для обнаружения и регистрации электрических колебаний», опубликованной в 1896 в журнале Русского физико-химического общества, Попов писал:

В соединении с вертикальной проволокой длиною 2.5 метра прибор отвечал на открытом воздухе колебаниям, произведенным большим герцевым вибратором (квадратные листы 40 сантиметров в стороне) с искрой в масле, на расстоянии 30 сажен (64 м).

…При дальнейшем усовершенствовании его, может быть применен к передаче сигналов на расстояния при помощи быстрых электрических колебаний.

В 1899 П. Н. Рыбкин и Д. С. Троицкий – помощники Попова – обнаружили детекторный эффект когерера. На основе этого эффекта Попов построил «телефонный приёмник депеш» для слухового приёма радиосигналов (на головные телефоны) и запатентовал его (Русская привилегия № 6066 от 1901). Приёмники этого типа выпускались в 1899–1904 в России и во Франции (фирма «Дюкрете») и широко использовались для радиосвязи. В начале 1900 приборы Попова были применены для связи во время работ по ликвидации аварии броненосца «Генерал-адмирал Апраксин» у острова Гогланд и при спасении рыбаков, унесенных на льдине в море. При этом дальность связи достигла 45 км. В 1901 Попов в реальных корабельных условиях получил дальность связи 148–150 км.

К сожалению, оказалось весьма непростым делом описать историю деятельности А.С.Попова. Хронология его изобретений и их достоверность существенно расходятся как в русскоязычных источниках, так и в публикациях на английском языке. Казалось бы, что может быть проще составить обзор деятельности соотечественника. Но, увы, наша история меняется с годами, в отличие от «их» истории, которая практически неизменна. Как нельзя дважды войти в одну и ту же реку, так нельзя изменить прошлое. События XX века в наших республиках опровергли эту народную мудрость.

Чтобы не вызывать полемики, автор не считает возможным приводить хронологию деятельности Александра Степановича Попова.

Нет оснований считать, что Маркони заимствовал у Попова его схему, как нет оснований подвергать сомнению известные из воспоминаний сведения об экспериментах Маркони по беспроводной сигнализации с помощью электромагнитных волн, начатых им в 1895 г. И Попов, и Маркони использовали в экспериментах результаты своих предшественников и в первую очередь, говоря о приемнике, работы Лоджа. А что Маркони пришел к весьма близкому схемному решению, то история науки и техники знает немало аналогичных случаев.

Александр Степанович Попов отдавал должное работам Маркони. Он писал, что «Маркони первый имел смелость стать на практическую почву и достиг в своих опытах больших расстояний». Было бы неверным преуменьшать роль итальянского радиотехника в быстром распространении и развитии радиосвязи.

Вызывало недоумение, что в первый год нового века прилично одетый молодой человек двадцати семи лет пребывал в лачуге выстроенной на крутом и ветреном утесе канадского Ньюфаундленда, напрягая слух в попытках расслышать сквозь помехи и шумы заветные сигналы. И было ему абсолютно неважно, что будет содержаться в послании. Был важен сам факт, который должен был стать точкой отсчета новой эры. И он услышал сообщение. Сигналы, перелетевшие через Атлантику с радиостанции на полуострове Корнуолл в Англии, стали первой ласточкой в грядущей радиофикации человечества…

Маркони всегда означало бизнес. На 50 000 фунтов, взятых в кредит в банках Великобритании он доказал всему миру, что радио это современное чудо, которое в свою очередь сделало его богатым и знаменитым.

В Лондоне основана «Беспроводная Телеграфная Компания Маркони». Подписан ряд контрактов с судовыми компаниями. Беспроводной телеграф используется на кораблях английского, французского, немецкого и итальянского флотов. Подписан контракт на обеспечения флота США. Теперь ему не страшны неудачи, которых, впрочем, и не было.

…Сильный ветер сорвал полотна огромных антенн, которые он построил в Англии. Сильный ветер сломал его мачты на другой стороне Атлантики в Ньюфаундленде, задержав эксперименты. Тогда было решено устанавливать антенны не на опорах, а поднимать на воздушных шарах и гигантских воздушных змеях. Но штормовой ветер разгадал и эту хитрость Маркони: его воздушные шары и три из четырех змеев были унесены. Но, несмотря на капризы погоды, в относительно безветренный день 12 декабря 1901 года Маркони все-таки услышал слабые сигналы с другой стороны Атлантики: точка, еще точка и опять точка… – символ «S» кода Морзе. Вряд ли в хронологии радио был более важный день или более важное свершение.

В то время беспроволочный телеграф был еще совсем ребенком – всего шесть лет от роду. Ученые и инженеры были единодушны в своей вере: радиосвязь невозможна за пределы горизонта. Посылаемые сигналы бесследно исчезали в атмосфере. Это знал каждый или думал, что знает.

В тот день Маркони и его команда принимали сигнал еще около 25 раз, но толпе любопытствующих не было сделано никаких объявлений. В течение еще трех дней продолжалась бессменная вахта. Наконец, когда всем стало ясно, что более сильного сигнала не будет, Маркони пригласил фотографа, чтобы составить отчет о происшедшем.

16 декабря 1901 года весь мир узнал из газетных заголовков о величайшей научной сенсации года: Маркони опроверг физические взгляды своего времени. Он доказал, что сообщения, переданные электромагнитными волнами из Корнуолла, смогли достичь Канады «изгибаясь» вместе с шарообразностью Земли.

Сначала не все поверили сообщению Маркони. Александр Белл, человек, который преобразовал человеческий голос в электричество и поместил его в провода, сказал: «Я сомневаюсь, что Маркони сделал это. Это невозможно». Вероятнее всего Белл скептически отнесся к сообщению еще и потому, что если радио Маркони заработает, то отпадет надобность в дорогих трансатлантических кабелях проложенных по дну океана компаньонами Белла из «AT&T».

10 дюймовый искровой передатчик Маркони, 1901. С помощью такого передатчика был послан сигнал «SOS» с Титаника.

Томас Эдисон, чей авторитет имел не меньший вес в научном мире, был более щедр в оценках:

Я поражен! Я хотел бы встретиться с этим молодым человеком, у которого хватило дерзости на пересечение Атлантики электрической волной.

Эдисон много читал о молодом итальянском гении и был в курсе экспериментов Маркони. В ответ на вопрос репортера, верит ли он сообщениям, Эдисон ответил: «Что!? Вы сомневаетесь! Если это говорит Маркони, то это правда!»

В 1896 Маркони было всего 22 года, но он уже догонял Попова и в скором времени в значительной степени превзошел Александра Степановича, потому что имел больше поддержки и свободы. Маркони был скорее предпринимателем, нежели ученым. Общество жаждало вещей, а не теорий. И насколько аморфная Россия не заинтересовалась исследованиями Попова, настолько Запад заинтересовался исследованиями Маркони.

Еще в ранней юности изумительная интуиция позволила итальянскому пареньку всерьез задуматься о возможности использования волн Герца для беспроводной связи. В двадцатилетнем возрасте на семейной вилле вблизи Болоньи (Италия) Маркони переоборудовал зернохранилище в лабораторию, где он, с несвойственным его возрасту упорством, день и ночь среди мотков провода, медных сфер, катушек Румкорфа, телеграфных ключей Морзе и электрических звонков проводил первые эксперименты с радиосвязью. Первые слабые сигналы можно было принимать на расстоянии сотен метров: от окна зернохранилища, где был помещен передатчик, до холма в конце сада, где размещался приемник. Три точки символа «S», посылаемые кодом Морзе, достигали приемника, и рабочий фермы махал носовым платком, чтобы подтвердить успешный прием. Но замыслы Маркони простирались за пределы сада, он хотел большего. Установив приемник на другой стороне холма (вне зоны прямой видимости) и поручив помощнику Мигнани следить за устройством, в апреле 1895 Гульельмо отстучал свое тестовое сообщение. Каково же было ликование молодого человека, когда он услышал грохот выстрела, подтверждающий прием. Отцовский дробовик возвестил, что радиосвязь возможна – электромагнитные волны преодолели препятствие!

Слишком мала мощность вибратора Герца для дальней передачи, а что если… Как привычны сегодня антенна и заземление родившиеся в старом зернохранилище в далеком 1895 году.

Никто кроме матери не придал значения экспериментам сына. Она добилась его поездки в Рим, чтобы получить какую-нибудь финансовую помощь от почтового и телеграфного ведомства. Но бюрократизм не понял новшества: «Наш телеграф и так прекрасно работает, – удивился министр связи, – Зачем нам нужен беспроводной телеграф?»

Но энергичная ирландка не унималась. Она упаковала провода и батарейки Гульельмо и отправила сына в Англию, благо у нее там осталось множество друзей. Каким-то внутренним чутьем она знала, что кто-нибудь в Лондоне оценит то, что не оценили в Риме. В конце концов, разве не англичанин Вильям Гилберт, придворный врач королевы Елизаветы, издал первую книгу по электрическим явлениям еще в 1600 году?

Британские таможенники – люди осторожные. Какой еще передатчик для беспроводного телеграфа? А вдруг это бомба? Анна, мать Гульельмо, сострила: «Да, это бомба! Только она не разрушит мир, она разрушит его стены». Когда же, наконец, было выяснено, что это просто новое «хитроумное изобретение» проход был открыт.

А затем был запрос Уильяму Прису, главному инженеру Британского Почтового ведомства, сыгравшему важную роль в продвижении изобретения. Был первый британский патент, а затем сотни других патентов в последующие годы.

В 1897 согласно законам Англии Маркони было выдано разрешение на регистрацию его знаменитой «Wireless Telegraph and Signal Company Limited». Он быстро организовал производство и продажу передатчиков транспортным компаниям, обеспечив этим рост фирмы.

В октябре 1899 он отправился в США для обеспечения радиосвязью регаты на Кубок Америки, благодаря чему был удостоен долгожданного внимания прессы.

Командование американского флота пригласило его на демонстрацию радиотелеграфной связи между крейсером «Нью-Йорк» и линкором «Массачусетс» на расстояние около 35 миль (65 км). Все прошло удачно. Флот был поражен и увлечен. Сразу же было выражено желание установить беспроводные системы на все суда, теплоходы, патрульные катера и лодки. Но имелась одна маленькая проблема…

Один из офицеров сетовал: «Когда работает один передатчик, то все принимают. Но когда работают два передатчика одновременно, то в приемнике одновременно слышны оба сообщения. Мы не можем разобрать ни одно из них. Как вы предлагаете решить это, мистер Маркони?» Маркони не задумываясь, ответил, что оставил необходимое оборудование в Англии и обещал показать его в следующий приезд. Он блефовал. У него не было оборудования, чтобы «распутать» электромагнитный беспорядок. Но он был уверен, что создаст его. Если бы он мог заставить передающую станцию излучать только определенную волну и настроить на нее приемник…

По возвращению в Англию Маркони приглашает на работу наиболее известного мастера электроники Джона Флеминга. И уже в 1900 Маркони получает патент №7777 на «Oscillating Sintonic Circuit» – систему настройки. «Чтобы обеспечить установление четкой связи с одной или более передающих станций одному или нескольким приемникам».

Набор цифр в номере патента было простым совпадением, но оно оказалось знаменательным. Маркони создал настройку на частоту.

К этому времени Маркони приглашал на работу ученых самого высокого ранга. Маркони без высокомерия признавался:

Я нуждаюсь в любой помощи, которую могу получить. Я читаю все, абсолютно все, что могу найти по телеграфной связи. Я никого не пропускаю и ничего не игнорирую, никакую идею, какой бы абсурдной она не была. Я пробую все, по крайней мере один раз.

Дента Маркони, его дочь от первого брака, вспоминала:

…Все ассистенты отца назвали его почтительно Господин Маркони. Они рассказывали, что он был всегда готов выполнить любую работу, которая требовалась в данный момент. У него были золотые руки…

По мнению современников, Маркони не был хвастуном. Он слушал похвалу и наслаждался ею, потому что был итальянцем. Он быстро забывал похвалу, потому что был еще и ирландцем. Он был очень настойчив и упорен. Он был очень наблюдательным. Он имел прекрасное умение концентрироваться. И он был феноменально работоспособен.

Заслуга Маркони прежде всего в том, что он был «человеком системы», первым, кто успешно объединил чужие практические и теоретические изыскания в области беспроводной связи в бизнес.

Очень верно заметил историк Хью Айткен (Hugh Aitken):

Маркони отличали от современников не его научные знания, не первоначальное превосходство его технологии. Это было требование рынка, которому была необходима эта новая технология.

Сердце Маркони остановилось 20 июля 1937 года. В этот день по всему миру на 2 минуты замолчали все радиостанции, отдавая последнюю почесть великому человеку.

Информация взята из сайта http://www.radio5.boom.ru