Цены и наличие товара Вы можете уточнить здесь

Мобильные/стационарные
Icom IC-F610MT/F620MT >>

Icom IC-F2500 >>
Kenwood TK-815

Портативные
Icom IC-F41GT-MT >>

Kenwood TK-355

Мобильные/стационарные

Icom IC-F610MT/F620MT

 

Icom IC-F610MT/F620MT
  • 32 конвенциональных канала с поддержкой СTCSS
  • интерфейс МАР27 для передачи данных
  • передача SDM кирилицей
  • сремблер UT-109 или UT-110 (опция)




Icom IC-F2500

 

Icom IC-F2500
  • мобильная радиостанция (400-470 МГц)
  • МРТ-1327
  • узкая / широкая полоса
  • высокий динамический диапазон
  • 25 Вт выходной мощности
  • съёмная панель
  • малые габариты




Kenwood TK-815






  • передача цифровых данных со скоростью 1200/9600 Бод при помощи собственного протокола и стандартного протокола MAP27
  • управление работой радиостанции с компьютера
  • интерфейс для работы с приемником GPS
  • работа в нескольких логических сетях
  • поддержка 9 независимых конвенциональных каналов





Портативные

Icom IC-F41GT-MT

 

Icom IC-F41GT-MT

В настоящее время в мире широкое распространение получили транковые системы радиосвязи МРТ-1327/1343. В качестве абонентских радиостанций в таких системах могут быть использованы новые модели транковых радиостанций ICOM IC-F41GT-MT.

  • Радиостанции соответствует военному стандарту MIL STD-810 C/D/E.
  • Прочная конструкция. Корпус из ударопрочного пластика, литой цельный алюминиевый каркас, гибкая навинчивающаяся антенна армированная пластиком. Надежное крепление аккумулятора.
  • Удобные большие кнопки подсвечиваемой клавиатуры.
  • Разнесенные микрофон и громкоговоритель.
  • 16 конвенциональных каналов с CTCSS.
  • Каждый канал может иметь произвольное 12-символьное имя.
  • Встроенные кодеры/декодеры DTMF, 2/5-тоновой системы, CTCSS и DTCS.
  • Большой LCD дисплей позволяет отображать 2 строки информации буквами высотой 12 точек.
  • 40 буквенно-цифровых банков памяти.
  • Высокоскоростной синтезатор частоты.
  • Встроенная функция компандера позволяет улучшить качество звука и увеличить дальность связи.
  • Поддерживают передачу сообщений, пейджинг, переадресацию вызова, конференц-связь. Допускают динамическую перегруппировку и использование чрезвычайного, приоритетного, группового, системного и других типов вызовов.
  • Поддерживают передачу данных по протоколу МАР-27.
  • Встроенный VOX и программируемый интервал канала.
  • Позволяют устанавливать модуль маскиратора речи.
  • Новый надежный универсальный 9-контактный разъем для подключения внешних устройств (телефонов, гарнитур, тангент, компьютера).

 

Технические характеристики IC-F41GT-MT
Диапазон частот, МГц 400...430 / 440...480
Выходная мощность, Вт 4
Количество каналов работа в МРТ-1327 / МРТ-1343
+ 16 конвенциональных
Диапазон рабочих температур -30...+60 °С
Габариты и вес 54х139х38 мм, 420 г
Чувствительность (12 дБ SINAD), мкВ 0.25 0.25

 

Kenwood TK-355






  • сертифицировано в системе Госстандарта и Госкомсвязи Украины
  • работа в нескольких логических сетях
  • перепрограммируемая ПЗУ типа FLASH
  • соответствие американскому военному стандарту MIL-STD 810 C/D/E
  • поддержка 9 независимых конвенциональных каналов




К вопросу об истории радиосвязи
Если разобраться глубже, то радиосвязь (принято ее называть обобщенным словом "радио") началась не с А. Попова и Г. Маркони. Как и многие другие успехи в электричестве и магнетизме, она базируется на изобретениях и открытиях английского физика Майкла Фарадея (1791-1867) и работах выдающегося английского математика и физика Джеймса Клерка Максвелла (1831-1879).

Среди многих открытий Фарадея было разъяснение им в 1831 г. принципа электромагнитной индукции. Обладая даром предвидения, он писал в 1832 г.: "Я полагаю, что распространение магнитных сил от магнитного полюса, волн на поверхности возмущенной воды и звука в воздухе имеют родственную основу. Иными словами, я считаю, что теория колебаний будет применима к этому явлению, равно как и к звуку и, весьма вероятно, к свету".

Максвелл был согласен с этим утверждением. Однако наука развивалась медленно, и лишь в 1855 г. он опубликовал статью "О силовых линиях Фарадея", а в 1864 г. дал миру свою ошеломляющую работу "Динамическая теория электромагнитного поля".

Эта статья содержала то, что мы сейчас называем уравнениями Максвелла. Она объясняла все известные явления электромагнетизма, а также предсказывала существование радиоволн и возможность их распространения со скоростью света.

22 ноября 1875 г. американский изобретатель и предприниматель Томас Алва Эдисон (1847-1931) наблюдал, как после возникновения сильной искры между полюсами индуктора в рассыпанных на столе угольных зернах проскакивали искры, он записал тогда в свой дневник о наблюдении "эфирной силы". Hо потом как-то забыл об этом. По крайней мере до 1883 г.

В 1887 г. теоретические выводы Максвелла были экспериментально подтверждены немецким физиком Генрихом Рудольфом Герцем (Херцем) (1857-1894). Используя искровой передатчик и рамочную антенну с небольшим зазором (вибратор Герца) в качестве приемника, он передавал и принимал радиоволны в своей лаборатории в Карлсруэ. Более того, он применил отражательное устройство для обнаружения стоячих волн и показал, что радиоволны подчиняются всем законам геометрической оптики, включая рефракцию и поляризацию. Впервые дал описание внешнего фотоэффекта, разрабатывал теорию резонансного контура, изучал свойства катодных лучей и влияние ультрафиолетовых лучей на электрический разряд.

Пионером самой идеи радиосвязи по праву можно считать и болгарского ученого Петра Атанасова (Хаджиберовича) Берона (1800-1871), который в приложении к III тому (с. 906-944) семитомной "Панепистемии" (панепистемия - всенаука, т. е. единая наука существующего мира; французское издание периода 1861-1870 гг. хранится в Национальной библиотеке св. Кирилла и Мефодия в Софии) приводит свой проект беспроволочной передачи сообщений как по суше, так и по воде. Проект содержал многие технические чертежи будущего беспроволочного телеграфа.

Строго говоря, практическая эра радиосвязи берет свой отсчет с 1883 г., когда Эдисон открыл названный его именем эффект, пытаясь продлить срок службы созданной им ранее лампы с угольной нитью введением в ее вакуумный баллон металлического электрода. При этом он обнаружил, что если приложить к электроду положительное напряжение, то в вакууме между этим электродом и нитью протекает ток. Это явление, которое, к слову сказать, было единственным фундаментальным научным открытием великого изобретателя, лежит в основе всех электронных ламп и всей электроники дотранзисторного периода. Им были опубликованы материалы по так называемому эффекту Эдисона и был получен соответствующий патент. Однако Эдисон не довел свое открытие до конечных результатов.

Некоторые критики первой половины XX-го столетия выдавали данный факт за доказательство того, что он был просто настойчивым ремесленником, а не великим ученым. Защищая же Эдисона, историки отмечали, что в то время он был всецело занят многими другими изобретениями и организацией всевозможных производств в области электрорадиотехники: в 1882 г. при его участии была пущена первая электростанция на ул. Пирл-Стрит в Нью-Йорке, и в 1883 г. Эдисон был поглощен многими финансовыми, организационными и техническими проблемами. В последующие годы он создал множество приборов и устройств (в том числе мощные электогенераторы, фонограф, прототип диктофона, железо-никилиевый аккумулятор и др.)