Цены и наличие товара Вы можете уточнить здесь

Портативные
Icom IC-F51/IC-F61>> (New)
Icom IC-F50/IC-F60 >>

Icom IC-F51/IC-F61

Радиостанция IC-F51/F61 специально разработана для использования во взрывоопасных средах и имеет сертификат взрывозащиты АТЕХ по международному Стандарту II2G EEx ib IIAT3.

IC-F51/F61 предназначена для профессиональной связи в нефтегазовой отрасли, горнорудной промышленности, химической промышленности, службах спасения, противопожарных службах и т. п.

Взрывозащищенная версия АТЕХ IC-F51/F61 имеет выходную мощность 1 Вт и используется только в комплекте со специальным аккумулятором BP-227AX (идет в комплекте).

Радиостанция удовлетворяет всем современным стандартам оборудования сухопутной подвижной связи. Имеет прочную конструкцию и превосходную водозащиту. IC-F51/F61 создана таким образом, чтобы противостоять опасным и разрушающим окружающим средам на море и на суше. Водонепроницаемый корпус IC-F51/F61 отвечает требованиям Стандарта JIS, пункт 7 (радиостанция может выдерживать в течение 30 минут пребывания в морской воде на глубине 1 метра). Литая алюминиевая рама, винтовое крепление антенны, цельная панель из высокопрочного поликарбоната обеспечивают безупречную работу радиостанции IC-F51/F61 в жестких условиях военного стандарта MIL-STD категорий C/D/E/F.

Простота и удобство в работе. Радиостанция имеет 6 четко маркированных кнопок на передней панели и регулятор громкости, которые максимально упрощают работу с радиостанцией. Даже в рабочих рукавицах большие кнопки позволяют легко работать. Подсветка ЖК-дисплея и кнопок очень удобна для работы в темное время суток. Программируемые символы на дисплее (в том числе поддержка русского текста).

Водозащищенная прочная тангента, НМ-138. Дополнительно поставляемая тангента НМ-138 позволяет легко работать, когда радиостанция закреплена на поясе. Для крепления радиостанции на ремне можно использовать клипсу МВ-96F. Большая кнопка передачи на тангенте позволяет легко и удобно работать в рабочих рукавицах.

Все, что необходимо для обеспечения качественной связи и удобной работы абонента, уже имеется в радиостанции в качестве встроенных функций.128 программируемых каналов, с шагом 25/20/12,5 кГц в полном диапазоне 136…174 мГц (400...470 мГц). Все программируемые каналы можно разделить на 8 банков. Встроенные сигнальные системы CTCSS (тональный шумоподавитель), DTCS (кодовый шумоподавитель), 5-Tone, DTMF.

Поддержка стандарта BIIS, цифровой взаимообмен информацией и командами, групповые и индивидуальные вызовы, статусные и текстовые сообщения SDM. Радиостанция может подключаться к системе GPS (система позиционирования объекта) через интерфейс RS-232.

Дополнительные возможности :
Несколько видов высокоскоростного сканирования.
Выбор звукового сопровождения для каждой кнопки.
Функция блокировки управления и пароль на включение.
Индикация разряда аккумулятора 4 уровня.
Высокоэффективные антенны участков поддиапазонов.
Высокоскоростное программирование с ПК (19200 bps).
Возможность установки голосового скремблера совместимого с UT-110.

Программирование радиочастот и функций управления радиостанцией производится с компьютера под операционной системой Windows 95/98/2000/XP.

Технические характеристики IC-F51
Технические характеристики IC-F61
Диапазон частот (МГц) 136…174 400–470
Выходная мощность (версия ATEX), Вт 1 1
Напряжение питания, В 7.2 7.2
Чувствительность, dB?V
(20дБ SINAD)
4 4
Диапазон рабочих температур -25…+55 -25…+55
Габариты, мм 56x97x36,4 56x97x36,4
Вес с аккумулятором, г 290 (c аккумулятором BP-227AX) 290 (c аккумулятором BP-227AX)
Потребляемый ток,
Макс. (Мин.), А
Передача: 0,8 (0,7)
Прием: 0,3
Ожидание: 0,085
Передача: 0,8 (0,7)
Прием: 0,3
Ожидание: 0,085


Icom IC-F50/IC-F60



  • Прочная конструкция, превосходная водозащита. IC-F50 создана таким образом, чтобы противостоять опасным и разрушающим окружающим средам на море и на земле. Водонепроницаемый корпус IC-F50 отвечает требованиям стандарта JIS, пункт 7 (радиостанция может выдержать в течение 30 минут пребывание в воде на глубине 1 метра). Компактный и прочный корпус создан в соответствии с военным стандартом MIL-STD.
  • Простота в работе. 6 четко маркированных кнопок на передней панели и регулятор громкости максимально упрощают работу с радиостанцией. Даже в перчатках большие кнопки позволяют легко работать. Подсветка большого ЖК-дисплея и кнопок очень удобна для работы в темное время суток. Программируемые символы на дисплее (в том числе, русские буквы).
  • Li-Ion аккумулятор 1700 мАч. Li-Ion аккумулятор ВР-227 входит в комплект IC-F50. Емкость 1700 мАч обеспечивает повышенное время работы радиостанции: до 15 часов! (режим 5:5:90) Без "эффекта памяти". Дополнительно доступен батарейный отсек ВР-226 (на 5 батареек типа АА), который можно использовать в критической ситуации.
  • Водозащищенная прочная тангента, НМ-138. Дополнительно поставляемая тангента НМ-138 позволяет легко работать, когда радиостанция закреплена на поясе. Большая кнопка передачи позволяет работать в перчатках.
  • Выходная мощность 5 Вт. Для экономии заряда аккумулятора возможно установить выходную мощность 3Вт или 1Вт.
  • 128 программируемых канала из диапазона 146-174МГц, с шагом 25/12.5 кГц. Возможно деление на 8 банков.
  • Встроенные сигнальные системы CTCSS, DTCS, 5-tone, DTMF (работа в транке не предусмотрена).
  • Поддержка стандарта BIIS (цифровой взаимообмен информацией и командами): групповые и индивидуальные вызовы, статусные и текстовые сообщения SDM, интерфейс RS-232, подключение GPS.
  • Радиостанция имеет встроенный маскиратор речи (32 кода, совместим с UT-109).
  • Встроенный речевой компрессор (компандер). Совместим со станциями F30G и F510.
  • Прочие функции и особенности:
  • несколько видов высокоскоростного сканирования;
  • большой функциональный дисплей с подсветкой;
  • выбор звукового сопровождения для каждой кнопки;
  • функция блокировки управления пароль на включение;
  • индикация разряда аккумулятора (4 уровня);
  • высокоэффективная антенна (несколько версий в зависимосити от частоты);
  • высокоскоростное программирование с ПК (19200bps)
    Технические характеристики IC-F50
    Диапазон частот (МГц) LMR Tx/Rx: 136…174
    Мощность передатчика, Вт 5/3/1
    Напряжение питания, В 7.2
    Чувствительность, мкВ (12 дБ SINAD) 0.25
    Диапазон рабочих температур -30...+60
    Габариты, мм 62х97х39
    Вес с аккумулятором, г 280
Радиоприемник - мир прекрасного
Открытия и изобретения живут не всегда долго. Одни забываются очень быстро, другим судьба дает долгую жизнь, пока новое открытие не перечеркнет или дополнит, а может, и поглотит его. Особое место в истории науки и техники занимает радиоприёмник и радиопередатчик, которые составляют основу системы радиосвязи. Появление "радиокондуктора Бранли" только способствовало появлению радиосвязи, но понадобилось еще около 10 лет, чтобы она стала реальностью. На пороге создания радиосвязи были многие ученые, но только единицы завершили начатые исследования.
Очень близко подошел к этой проблеме американский изобретатель Элиху Томсон (Elihu Tomson). Э. Томсон получил 693 патента. В среднем он получал 1 патент в месяц. Это второй результат по количеству патентов после Т. Эдисона, у которого 1093 патента. Заняться экспериментами в области радиосвязи Э. Томсона подтолкнула статья другого американского изобретателя Т. Эдисона. Проводя эксперименты с большим электромагнитом, Т. Эдисон увидел небольшие искорки, которые проскакивают между металлическими предметами в комнате. В 1875 г. он установил, что искорки не влияют на электроскоп с золотыми листочками. Немедленно он опубликовал статью об открытой им "эфирной силе", считая искорки не электрического происхождения. Статья попала на глаза Э. Томсону и заставила его вспомнить проведенные им опыты с катушкой Румкорфа в 1871 г. Элиху решил повторить свои прежние опыты. Включив катушку Румкорфа, он стал носить её по комнатам дома и увидел, что в любой точке помещения между остриями вспыхитвают искорки. Помощник Э. Томсона по эксперименту обнаружил, что искорки вспыхивают на различных этажах дома.
Так было доказано, что электромагнитные волны передаются через пространство. После этого Э. Томсон сделал установку с резонаторами, которая позволяла установить волновую природу электромагнитных волн, создаваемых разрядником. Доказав неправомерность утверждений об "эфирной силе", Э. Томсон этим и удовлетворился. Э. Томсон может быть рекордсменом по упущенным великим изобретениям. Так, он не довел дело до конца с телефоном, системой трехфазного тока, использованием гибких прозрачных пленок в фотографии. Но наибольший его просчет - радиосвязь.
Через 17 лет немецкий физик Генрих Герц сделал мировое открытие, экспериментально доказал наличие электромагнитных волн в пространстве. Он ограничился научным результатом открытия и не сделал шагов к практическому его использованию. В итоге, за него это сделали другие.
История "беспроволочного телеграфа" сохранила еще одно имя. Вокруг имени этого человека шли различные разговоры, которые были рождены больше таинственностью и необычностью его занятий. Еще бы, ученый, кроме всего прочего, лечил людей с помощью телефона. Имел 27-метровую антенну, на которую принимал сигналы, предвещающие грозу. А 12 февраля 1891 г. за 4 года до изобретения А. С. Попова, демонстрировал "телеграф без проводов" на заседании физического отделения Русского физико-химического общества при Петербургском университете. Об этом заседании имеется запись в протоколах общества. Сообщается "о звучании в изолированных телефонах и полном успехе демонстрировавшихся опытах". Это был Яков Оттович Наркевич-Едко. Белорусс по национальности, достаточно известный ученый в тот период времени. Любопытно, что приоритет в проведенных исследованиях Я. О. Наркевича зафиксирован и в протоколах заседаний Французского физического общества в Париже. Больше информации об опытах этого ученого не появлялось, а вспомнили мы о нем, как о человеке, прикоснувшемся к великой проблеме - "телеграф без проводов".
В истории создания "телеграфа без проводов" нельзя не вспомнить крупного сербского изобретателя Николу Тесла. Его изобретения способствовали возникновению радиосвязи, среди них есть источник высокочастотных токов, антенна, резонансные контурные катушки индуктивности, устройства для тушения искры в разряднике. Удивительно, но в этом ряду не нашлось места для когерера. Н. Тесла так и не ввел его в свои схемные решения. И, как итог не создал радиосвязь, а только способствовал её появлению. Он верил в появление "телеграфа без проводов" и высказывал фантастические идеи для конца 19 века: "После того как осуществят сигнализацию с любой точки на любую другую точку Земного шара, следующим шагом будет посылка сигналов к другим планетам". Это было сказано летом 1894 г.
Ближе всех к решению данной проблемы подошел английский ученый Оливер Лодж член Лондонского королевского общества. О. Лодж ввел название "когерер" прообраза современного детектора, и именно его обобщающая лекция памяти Г. Герца оказала большое влияние на исследования А. С. Попова. Невзирая на значительные научные результаты в области "телеграфа без проводов", О. Лоджу не суждено было воплотить их в практически пригодную систему передачи информации с помощью электромагнитных волн. Его исследования остались в рамках научной лаборатории.
Существуют два типа творцов, которые в равной мере необходимы для развития науки. Первый характеризуется чисто исследовательской направленностью работы как теоретической, так и экспериментальной. Второй - инженерный, изобретательский. Экспериментальное открытие и изучение электромагнитных волн есть чисто научное открытие. Г. Герц так писал о своем научном выборе: "Раньше я часто говорил себе, что мне больше хотелось бы быть великим учёным, чем крупным инженером...". Деятельность второго типа творцов направлена на извлечение практической пользы из открытий, сделанных в той или другой области. В истории науки и техники эти два типа творцов обычно разделены. Немецкий физик-химик Вильгельм Освальд отмечал, что величайший Т. Эдисон, поставив более опытов, чем кто-либо другой, и тем не менее не сделал ни одного научного открытия. Великий изобретатель подчеркивал, что его область только изобретательство, но не наука.
Довольно редко творец совмещает в одном лице исследователя и изобретателя. В конце 19 века таким оказался русский ученый Александр Степанович Попов. Ему было суждено пройти путь от открытия к изобретению, а никому другому. Это судьба. 27 апреля (7 мая по новому стилю) 1895 г. на очередном заседании Русского физико-химического общества А. С. Попов сделал доклад на тему: "Об отношении металлических порошков к электрическим колебаниям". На заседании учёный продемонстрировал первую практически пригодную систему радиосвязи. Система радиосвязи состояла из оригинальной конструкции радиоприёмника и радиопередатчика. Для передачи информации его ассистент П. Н. Рыбкин включал передатчик, который посылал сигнал в виде радиоволн. Радиоволны улавливались антенной радиоприемника, в котором на выходе был включен звонок. Этот звонок свидетельствовал о приеме радиоволн, т. е. переход от научных исследований к практическому их воплощению.
День исторического доклада А. С. Попова фактически является днем рождения радио в широком смысле слова. В 1945 г. в ознаменовании 50-летия со дня изобретения радио, правительство СССР приняло постановление об увековечении памяти А. С. Попова. С тех пор день 7 мая ежегодно отмечается как День радио. В том же году, 2 мая, Академия наук СССР утвердила Золотую медаль имени А. С. Попова за выдающиеся научные работы и изобретения в области радио. Медаль явилась первой научной наградой академии. Присуждается она 7 мая один раз в три года отечественному и зарубежному ученому. Свое изобретение русский ученый не запатентовал, а ограничился лишь научной публикацией в начале 1896 г. в "Журнале Русского физико-химического общества". А. С. Попов, будучи ученым с большой буквы, по существу подарил человечеству свое изобретение. Французский ученый Э. Бранли 16 декабря 1889 г. на заседании Французского физического общества так отозвался об исследованиях А. С. Попова: "Телеграфия без проводов вытекает в действительности из опытов г-на Попова. Русский учёный усовершенствовал опыт, который я часто осуществлял и который я воспроизвел в 1891 г. перед обществом электриков...".
Этот шаг А. С. Попова, с одной стороны, дал большой толчок в исследовании по "беспроволочному телеграфу", а с другой є показал, что так делать нельзя. Как в повседневной жизни, так и в науке идет постоянное соперничество между учеными за приоритет в научных исследованиях, и не всегда это происходит корректно.
В дальнейшем А. С. Попов извлек из этого урок, и на следующее свое крупное изобретение, детекторный приемник с наушниками получил российский патент o 6066 в ноябре 1901 г. Детекторный приёмник с наушниками был долгое время самым распространенным приемником благодаря его простоте и дешевизне. Популярности этого приёмника могли бы позавидовать современные приёмники. Так, интересно, в конце 20-х годов в Москве была джазовая тусовка, люди делали детекторные приёмники, слушали прямые трансляции концертов из Лондона, по памяти записывали ноты, потом встречались и сличали записи. Последующие изобретения Г. Маркони, Д. Флеминга, Ли де Фореста и других сделали приёмник неотъемлимой частью нашего бытия. Заслуженная артистка РФ Аида Чернова вспоминала: " Я помню летние сумерки. Из открытого окна в комнату вливается запах жасмина и левкоев. Мы с мамой и сестричкой сидим тихо-тихо напротив радиоприёмника. Свершается волшебное таинство - живое существо с зеленым "глазком" начинает говорить...". Радиоприёмник - мир прекрасного для человека.
Современный радиоприёмник, мало, чем напоминает своего прадеда, созданного 100 лет назад, но объединяет их одно, наличие детектора (когерера) или диода. Современный когерер выполняет те же функции, что и впору своей юности. Нынешний приёмник позволяет "прогулки по волнам эфира" не менее увлекательные, чем по морям или океанским просторам. Вытесняется шкала с верньерным устройством, и ей приходит на смену жидкокристаллический дисплей, фиксированные настройки заменяются памятью. Современный приёмник может принять со спутника Земли метеотелеметрию и распечатать карту погоды с помощью встроенного принтера. Для этого к приёмнику подключают параболическую антенну, которая улавливает сигналы со спутников. Появились приёмники в виде кредитной карточки, толщиной менее 2 мм, они принимают УКВ станции. Выпускать эти приёмники начала японская фирма "Касио". Появилось цифровое радиовещание. В его основе лежит следующее. Электрическое напряжение, которое соответствует звуковой информации и является аналоговым непрерывно меняющимся сигналом, заменяется определенным набором импульсов, которые представляют собой цифровой код. Основное преимущество такой системы: преобразование цифровых сигналов происходит без накопления шумов или искажений. Приёмник цифровой системы радиовещания напоминает современные электронные часы и просто сочетается с микропроцессором, который активно управляет выбором и приёмом передач, дает возможность записывать желаемую. Цифровая система позволяет в эфирный сигнал ввести опознавательный импульс
передач, и приёмник по желанию владельца найдет не только конкретную радиостанцию, но и требуемую передачу, новости, спорт или для детей. Приёмник содержит блок повтора, передачу можно прослушивать с минутной задержкой - "ретроспективно".
Великое изобретение русского ученого Александра Степановича Попова - система радиосвязи и её составляющая радиоприёмник, живут и совершенствуются уже 100 лет, принося нам много удивительного.

Информация взята из сайта http://www.qrz.ru