Цены и наличие товара Вы можете уточнить здесь

Общие сведения >>
Функциональные возможности >>
Архитектура системы >>

Общие сведения


MPT-1327 - это стандартный протокол для транкинговых систем мобильной радиосвязи, опубликованный Департаментом торговли и промышленности Великобритании.
В процессе разработки протокол MPT-1327 был согласован между Великобританией, Францией, Италией и Германией , что предопределило его международный статус. В настоящее время широко используется для организации транкинговых систем мобильной связи в различных диапазонах радиочастот.
Этот протокол в настоящее время является, по сути, мировым стандартным протоколом. Большое количество производителей радиооборудования предлагает на мировом рынке совместимые между собой абонентские радиостанции и базовое оборудование. Это дает возможность владельцу транкинговой системы использовать в ней радиостанции различного производства. Кроме того, так как протокол является открытым, существует жесткая конкуренция между производителями упомянутого оборудования, что приводит к постоянному снижению цен на него. Среди известных фирм - производителей оборудования, работающего по протоколу MPT-1327, такие как FYLDE Microsystems, Zetron, Kenwood, Icom, Tait, Motorola, Rohde&Schwarz и другие.


Функциональные возможности


Системы транкинговой связи, работающие по протоколу MPT-1327, предоставляют пользователям весь спектр функциональных возможностей, свойственных современным транкинговым системам, а именно:

  • индивидуальный вызов мобильного абонента с городской телефонной сети общего пользования или с учрежденческой (ведомственной) АТС, индивидуальный вызов между мобильными абонентами;
  • выход мобильного абонента в городскую телефонную сеть общего пользования (городскую АТС) или учрежденческую АТС;
  • групповые вызовы, в том числе с городской телефонной сети;
  • широковещательные вызовы;
  • роуминг между сайтами и регионами;
  • постановка в очередь запроса на обслуживание, в лучаях, когда вызываемый абонент занят или заняты все рабочие каналы, что предотвращает отказ в обслуживании;
  • многоуровневая система приоритетов для всех типов вызовов;
  • динамическое перераспределение ресурсов системы;
  • передача цифровых данных произвольной длины;
  • передача 30 специальных статусных сообщений;
  • передачу коротких буквенно-цифровых сообщений по каналу управления, то есть без занятия рабочего канала;
  • система голосовой почты;
  • возможность построения на базе инфраструктуры MPT-1327 системы определения месторасположения подвижных объектов (система AVL);
  • возможность беспроводного доступа к базам данных;
  • возможность построения систем телеметрии.

    В каждом сайте системы осуществляется динамическое распределение радиоканалов между абонентами. Сайтовый контроллер назначает один из радиоканалов каналом управления. По этому каналу абонентские радиостанции и базовое оборудование связываются между собой, обмениваясь цифровыми пакетами. Кроме того, по этому каналу осуществляется передача абонентам статусных и коротких буквенно-цифровых сообщений. В случае внезапного роста нагрузки на систему, канал управления на время может стать рабочим каналом.
    Используя цифровой протокол управления, системы MPT-1327 позволяют в полной мере использовать доступные радиочастоты, что обеспечивает стабильность работы всей системы при любой степени загрузки.
    Система, при установлении соединения, осуществляет автоматический поиск вызываемого абонента во всей зоне действия, и устанавливает требуемое соединение вне зависимости от расположения вызывающего и вызываемого радиоабонентов.
    Одно из достоинств систем MPT-1327 - это их высокая "живучесть". Каждый ретранслятор в таких системах уже на первых уровнях управления снабжен специальным модулем управления каналом (так называемым канальным контроллером) и может продолжать свое функционирование и поддержание радиосвязи даже в случае выхода из строя всех остальных частей системы.
    Обзор транковой инфраструктуры

    Архитектура системы


    При построении многосайтовых систем MPT-1327 для осуществления роуминга между сайтами и соединения системы с городской телефонной сетью необходимо обеспечить достаточно сложную коммутацию внутри системы. Для решения этой проблемы используются два различных по идеологии подхода.

    Первым подходом является идеология распределенного управления.
    Все коммутационное оборудование распределено между сайтами системы. Управление системой осуществляется контроллерами всех сайтов одновременно , при этом отсутствуют региональные и межрегиональные звенья управления . Все сайты имеют практически одинаковое логическое оборудование. Системы с распределенной архитектурой управления более просты в установке, однако, имеют высокую стоимость. Наращивание мощности и емкости таких систем является достаточно сложным и связано с большими материальными затратами. Кроме того, они требуют наличия цифровых соединительных линий между сайтами очень высокого качества, что во многих случаях препятствует их распространению.
    Среди производителей таких систем можно назвать Rohde&Schwarz, ADI Communications и некоторых других.

    Вторым подходом является идеология построения системы с централизованным управлением.
    При этом подходе несколько сайтов объединяются между собой в один регион с помощью регионального контроллера , который отвечает за коммутацию внутри этого региона и обеспечивает связь системы с телефонной сетью и с ведомственными АТС, отслеживает перемещение абонентских радиостанций из сайта в сайт . Межрегиональную коммутацию и роуминг обеспечивает межрегиональный контроллер.
    Подобная архитектура обуславливает максимальную гибкость системы, легкость перегруппировки ее мощностей в зависимости от требований текущего момента. Кроме того, обеспечивается высокий уровень надежности системы, и даже при выходе из строя регионального контроллера отдельные сайты продолжают функционировать в автономном режиме.
    Системы с централизованным управлением производятся такими компаниями, как FYLDE Microsystems, Teltronic, Rohill, Aselsan, Tait и другими.
    Подобные системы прекрасно зарекомендовали себя в странах Западной Европы, где на их основе установлены сети транковой радиосвязи, системы высокой абонентской емкости, покрывающие большие территории.

    Широкое применение систем MPT-1327 во всем мире объясняется предельной гибкостью подобных систем. Возможно построение различных по сложности систем - от малых односайтовых, обслуживающих ограниченные территории (аэропорты, вокзалы, стадионы), до крупных национальных систем с обеспечением радиопокрытия территории всей страны. Все эти системы одинаково надежны и экономически оправданы.
    Многозоновая система
Как и куда распространяются радиоволны
Чем длиннее, тем дальше

Каждый раз, когда вы беретесь за ручку настройки радиоприемника и отправляетесь в путешествие по эфиру, перед вами открывается удивительный мир странствий, интересных и совсем не опасных приключений. Единственным их результатом будет расширение ваших знаний и кругозора.

Для обычного путешествия, как известно, нужны карта, компас (а лучше, спутниковый карманный приемник-навигатор - такие уже имеются), еще немного туристического снаряжения и элементарные знания и навыки. Для путешествия по эфиру, не выходя из дома, нужно все то же самое: снаряжение - радиоприемник, карта и "компас", справочник по радиостанциям мира и, конечно, знания и навыки. Как раз то, о чем мы сегодня собираемся поговорить.

Бесполезно искать ночью иголку в стоге сена, как бесполезно днем, находясь на территории России, искать в эфире американские радиостанции на средних волнах, хотя найти их можно ночью и днем. Итак, все наше многословие свелось к одному: вращая ручку настройки приемника, полезно хотя бы немного знать о распространении радиоволн на Земле.

Последней фразой я хотел подчеркнуть, что в Космосе все гораздо проще. Радиоволны, как и световые, и другие электромагнитные волны, распространяются прямолинейно. Они стараются это делать и на Земле, но она-то, как справедливо заметили еще средневековые ученые, круглая, и дальше горизонта на ней ничего не видно! Какой же смелостью надо было обладать Колумбу, а затем и Магеллану, чтобы экспериментально, собственным путешествием доказать сферичность Земли!

Трудно сравнивать, но изрядной смелостью обладал и Маркони, когда не прошло и десятилетия после первых успешных опытов Генриха Герца, Оливера Лоджа и Александра Попова по передаче и приему радиоволн, а он уже поставил целью послать радиосигналы через Атлантический океан. Были натянуты гигантские по тем временам проволочные антенны, построены мощные передатчики. И такая связь между побережьями Англии и Канады была впервые осуществлена в 1903 г. Успех был огромен, хотя всего-то и принято было достоверно три телеграфных тире.

В те годы уже было экспериментально, т. е. методом проб и ошибок, установлено, что чем длиннее волна, тем дальше она распространяется. Первую трансатлантическую связь провели на сверхдлинных волнах. Отсюда и применение гигантских антенн - ведь длина волны первых примитивных радиопередатчиков прямо зависела от длины антенны. Кроме того, чтобы антенна эффективно излучала, ее длина должна быть хотя бы порядка четверти длины волны. Тогда же необходимо было объяснить факт зависимости дальности распространения от длины волны явлением дифракции. Упрощенно говоря, дифракция - это огибание волной препятствия, а препятствием является высота шарового сегмента Земли, разделяющего приемную и передающую радиостанции (рис. 16). От Санкт-Петербурга до Москвы, как известно, около 600 км. Расчет дает высоту шарового сегмента h около семи километров, следовательно, длинные, километровые волны распространяются на такие расстояния.


У читателя может возникнуть вопрос: а как определить длину волны? Прежде ее обозначали в метрах прямо на шкале приемника, а теперь все чаще в килогерцах и мегагерцах (соответствующих длине волны), а уж современные цифровые шкалы и подавно измеряют только частоту. Длина волны l и частота колебаний f радиопередатчика обратно пропорциональны и связаны через скорость распространения радиоволн - c, такую же, как и скорость света: l= c/f. Практически, чтобы узнать длину волны в километрах, надо 300 разделить на частоту в килогерцах. Например, московская длинноволновая радиостанция на частоте 171 кГц (бывшая имени Коминтерна) имеет длину волны около 1,75 км. Ее можно слушать почти на всей территории европейской части России круглосуточно. Увлечение длинными волнами на заре радиотехники породило великую эпоху Радиостроя, когда антенны становились все выше, а радиостанции все мощнее. В 30-е годы радиостанция им. Коминтерна была самой мощной в Европе, излучая до 500 кВт, и ее слушали на детекторные приемники в самых глухих и отдаленных деревнях.

Радиостанций становилось все больше, и они стали создавать помехи друг другу. Здесь надо заметить, что при передаче радиовещательной программы станция занимает в эфире не одну частоту, а целую полосу частот шириной до 20 кГц. В справочниках указывают центральную частоту этой полосы, называемую несущей частотой, или просто несущей. Именно эту частоту и генерирует высокочастотный, или, как его называют, задающий генератор передатчика. Затем его колебания усиливаются и модулируются колебаниями звуковых частот.

В 30-е годы было достигнуто соглашение - установить разнос частот радиостанций в 9 кГц. Оно соблюдается и поныне. Теперь легко сосчитать, что на длинных волнах, в участке, отведенном для радиовещания (примерно от 150 до 400 кГц), можно разместить не более двух с половиной десятков радиостанций.

Со временем стали строить средневолновые радиостанции - в этом диапазоне около 120 частотных каналов, но и дальность распространения меньше, поскольку длина волны короче ( вспомните про дифракцию). Поэтому один и тот же частотный канал стали отводить нескольким, достаточно удаленным друг от друга радиостанциям. В дневное время они не создавали помех друг другу. Иное дело ночью, дальность распространения длинных и средних волн намного возрастала и становились слышны радиостанции, удаленные на несколько тысяч километров. Резко возрастали и взаимные помехи. Отчего это?

Ученые уже имели рабочую гипотезу. Высказал ее Оливер Хевисайд, чудаковатый английский джентльмен, чопорный и безукоризнено одетый, когда появлялся на людях. Но делать он этого не любил, а любил работать по ночам в жарко натопленной комнате и с наглухо занавешенными окнами. Говорят, что когда его избрали действительным членом Королевского Общества (по-нашему - Академии наук) и пригласили на торжественную церемонию избрания (черные мантии, головные уборы с четырехугольным верхом), он не нашел гинеи (а такой символический взнос надо было уплатить) и просто не пошел на заседание! К чести общества надо сказать, что оно все-таки избрало Хевисайда не действительным, но почетным членом, при этом не требовалось ни его присутствия, ни гинеи.

Так в чем же состояла гипотеза?

3.2. Жизнь преподносит сюрпризы!

Пока шла драка за распределение частот на длинных и средних волнах, короткими никто не интересовался, они считались просто непригодными для дальней радиосвязи и за ненадобностью были отданы... радиолюбителям. А такие уже были в начале двадцатых годов. Ведь и радиосвязь, и наблюдение за сигналами радиостанций - это очень интересно! И вот, от радиолюбителей стали поступать сенсационные сообщения: с помощью простейших передатчиков мощностью в несколько ватт и примитивных приемников устанавливались связи на десятки тысяч километров! Такой феномен уже нельзя объяснить дифракцией.

Тут-то и вспомнили гипотезу Хевисайда: верхние слои атмосферы должны быть ионизированы солнечным излучением. Ионизированный газ (ионосфера) содержит много свободных электронов и может проводить электрический ток, а значит, должен отражать радиоволны. Скорые на подъем американцы соорудили импульсный передатчик, и в 1924 г. инженеры Брейт и Тьюв получили отражение от ионосферы при вертикальном зондировании и измерили время запаздывания отраженного импульса, а по нему вычислили высоту отражающего слоя.

Ионосферу долгое время называли слоем Хевисайда. Позднее Эпплтон, анализируя отраженные сигналы, обнаружил, что отражающих слоев несколько. Ему же мы обязаны и названиями слоев. В своих расчетах он обозначил вектор напряженности электрического поля, как это обычно и делается, буквой Е. Когда же понадобилось обозначить поле другого отражения, он выбрал следующую букву алфавита - F. Убедившись, что отражения идут от разных слоев, он решил, что и названия им готовы - Е и F, при этом имея в виду, что в дальнейшем могут быть открыты и другие слои, для которых пригодятся и предыдущие, и последующие буквы алфавита. Это предвидение вполне оправдалось. Теперь известно, что в летний полдень можно наблюдать, по крайней мере, четыре четко различимых слоя. Самый нижний, слой D на высоте около 70 км, существует только днем. Слой E на высоте 90...120 км существует круглосуточно, лишь ночью в нем уменьшается электронная концентрация (Солнце-то, причина ионизации, не светит!) и увеличивается высота. То же, но в меньшей степени, происходит и со слоем F, но он расположен значительно выше - 200...250 км. Днем он распадается на два слоя - F1 и F2.

Информация взята из сайта http://www.chipinfo.ru