Система LTR - с контроллерами TRIDENT >>
Технические параметры контроллера TRIDENT "MARAUDER" >>
Система LTR - с контроллерами TRIDENT
Использование контроллеров TRIDENT позволяет превратить систему связи с обычным ретранслятором в полноценную транкинговую систему и, самое главное, в этой системе смогут работать обычные (не транкииговые) радиостанции.
TRIDENT-классические контроллеры LTR в смысле реализации протокола. Установка контроллера в систему не создаст проблем для работы уже существующего парка радиостанций.
Обычные радиостанции типа Kenwood ТК-260\360\270\370\278\378\760\768\860\868 получат доступ в систему по CTCSS или DCS кодам и будут работать совместно с транкинговыми радиостанциями типа Kenwood ТК-2140\3140\280\380\780\880; ICOM IC-F3G\4G\F320\F420. Новые модели портативных радиостанций Kenwood ТК-280 и автомобильных ТК-780; ICOM IC-F3\F3G\F320 для диапазона 136-174 МГц позволяют создавать недорогие многофункциональные системы транкинговой связи протокола LTR для пользователей, требующих оперативного вхождения в связь в течение 0,5-1,0 с. Как известно, системы SmarTrank II не обеспечивают такого быстрого соединения. Отсутствие абонентского оборудования для LTR систем в диапазоне 136-174 МГц не давало возможности предложить большинству пользователей оптимальные системы по соотношению качества и цены. Именно такими и являются системы LTR. Как правило, большинство заказчиков выбирало системы SmarTrunk II в силу их низкой стоимости при достаточно хороших показателях работы. Но если взять, например, таких потребителей оперативной связи, как подразделение МВД, то SmarTrunk II здесь не подходит по причине медленного соединения, низкой пропускной способности при малом числе каналов и отсутствием возможности одновременного сканирования транка и симплекса. Система LTR не имеет перечисленных выше недостатков. Дополнив уже существующие системы связи с ретрансляторами контроллерами TRIDENT можно существенно улучшить возможности системы. Контроллер обеспечит разделение абонентов по группам взаимодействия, а также обеспечит доступ в телефонную сеть для ряда пользователей.

Технические параметры контроллера TRIDENT "MARAUDER"
- Одновременная работа в системе как LTR, так и обычного радио.
- Поддержка 38 стандартных CTCSS и до 20 DCS тонов, выбираемых пользователем.
- Поддержка до 20 каналов в сайте.
- Dial click-детектор и возможность работы в пульсе.
- Режим дуплекса и полудуплекса.
- Программирование через модем.
- End-to-end, E&M type I, E&M type II-интерфейс.
- Биллинг соединений.
Многозоновые решения от TRIDENT
Для объединения сайтов в многозонновую сеть TRIDENT предлагает систему PassPort. Сердцем системы является промышленный компьютер, который занимается валидацией сетевых пользователей, маршрутизацией звонков, учетом соединений и т.д.
Сайты могут объединяться в сеть в следующих конфигурациях:
- Линейная - все сайты объединяются в цепочку (по Е-1, Т-1 и 4-проводным соединениям).
- Звезда - каждый сайт объединяется с центральным (по Е-1, Т-1 и 4-проводным соединениям).
- Сайты не объединяются с помощью специальных каналов связи (объединение осуществляется по Dial-up).
- Frame relay-все сайты объединяются под управлением Frame-relay.
- Любые комбинации из выше перечисленных.
Система PassPort обеспечивает следующие сервисные возможности:
- Поддержка 60 000 ID в системе.
- Follow-me роуминг.
- Wide Network Dispatch.
- Переадресация звонков.
- Голосовая почта.
К вопросу об истории радиосвязи
Если разобраться глубже, то радиосвязь (принято ее называть обобщенным словом "радио") началась не с А. Попова и Г. Маркони. Как и многие другие успехи в электричестве и магнетизме, она базируется на изобретениях и открытиях английского физика Майкла Фарадея (1791-1867) и работах выдающегося английского математика и физика Джеймса Клерка Максвелла (1831-1879).
Среди многих открытий Фарадея было разъяснение им в 1831 г. принципа электромагнитной индукции. Обладая даром предвидения, он писал в 1832 г.: "Я полагаю, что распространение магнитных сил от магнитного полюса, волн на поверхности возмущенной воды и звука в воздухе имеют родственную основу. Иными словами, я считаю, что теория колебаний будет применима к этому явлению, равно как и к звуку и, весьма вероятно, к свету".
Максвелл был согласен с этим утверждением. Однако наука развивалась медленно, и лишь в 1855 г. он опубликовал статью "О силовых линиях Фарадея", а в 1864 г. дал миру свою ошеломляющую работу "Динамическая теория электромагнитного поля".
Эта статья содержала то, что мы сейчас называем уравнениями Максвелла. Она объясняла все известные явления электромагнетизма, а также предсказывала существование радиоволн и возможность их распространения со скоростью света.
22 ноября 1875 г. американский изобретатель и предприниматель Томас Алва Эдисон (1847-1931) наблюдал, как после возникновения сильной искры между полюсами индуктора в рассыпанных на столе угольных зернах проскакивали искры, он записал тогда в свой дневник о наблюдении "эфирной силы". Hо потом как-то забыл об этом. По крайней мере до 1883 г.
В 1887 г. теоретические выводы Максвелла были экспериментально подтверждены немецким физиком Генрихом Рудольфом Герцем (Херцем) (1857-1894). Используя искровой передатчик и рамочную антенну с небольшим зазором (вибратор Герца) в качестве приемника, он передавал и принимал радиоволны в своей лаборатории в Карлсруэ. Более того, он применил отражательное устройство для обнаружения стоячих волн и показал, что радиоволны подчиняются всем законам геометрической оптики, включая рефракцию и поляризацию. Впервые дал описание внешнего фотоэффекта, разрабатывал теорию резонансного контура, изучал свойства катодных лучей и влияние ультрафиолетовых лучей на электрический разряд.
Пионером самой идеи радиосвязи по праву можно считать и болгарского ученого Петра Атанасова (Хаджиберовича) Берона (1800-1871), который в приложении к III тому (с. 906-944) семитомной "Панепистемии" (панепистемия - всенаука, т. е. единая наука существующего мира; французское издание периода 1861-1870 гг. хранится в Национальной библиотеке св. Кирилла и Мефодия в Софии) приводит свой проект беспроволочной передачи сообщений как по суше, так и по воде. Проект содержал многие технические чертежи будущего беспроволочного телеграфа.
Строго говоря, практическая эра радиосвязи берет свой отсчет с 1883 г., когда Эдисон открыл названный его именем эффект, пытаясь продлить срок службы созданной им ранее лампы с угольной нитью введением в ее вакуумный баллон металлического электрода. При этом он обнаружил, что если приложить к электроду положительное напряжение, то в вакууме между этим электродом и нитью протекает ток. Это явление, которое, к слову сказать, было единственным фундаментальным научным открытием великого изобретателя, лежит в основе всех электронных ламп и всей электроники дотранзисторного периода. Им были опубликованы материалы по так называемому эффекту Эдисона и был получен соответствующий патент. Однако Эдисон не довел свое открытие до конечных результатов.
Некоторые критики первой половины XX-го столетия выдавали данный факт за доказательство того, что он был просто настойчивым ремесленником, а не великим ученым. Защищая же Эдисона, историки отмечали, что в то время он был всецело занят многими другими изобретениями и организацией всевозможных производств в области электрорадиотехники: в 1882 г. при его участии была пущена первая электростанция на ул. Пирл-Стрит в Нью-Йорке, и в 1883 г. Эдисон был поглощен многими финансовыми, организационными и техническими проблемами. В последующие годы он создал множество приборов и устройств (в том числе мощные электогенераторы, фонограф, прототип диктофона, железо-никилиевый аккумулятор и др.)