Цены и наличие товара Вы можете уточнить здесь

Системы связи малого радиуса действия >>
Системы связи большого радиуса действия >>
Система с ретранслятором >>
Системы дистанционного управления базовой радиостанцией >>
Мобильные цифровые ретрансляторы (репитеры) >>
Системы связи для водолазов и подводного плавания >>
Воутеры >>

Системы связи малого радиуса действия


Такие системы используются для обеспечения локальной связи на небольшой территории. Как правило, это связь в зданиях или вне зданиях на расстоянии 1-2 км.

Для таких систем Концерном АЛЕКС предлагаются радиостанции ALCOM AL-446 мощностью 0,5 Вт и ICOM IC-F21 мощностью до 4 Вт, работающие на выделеных по всей Украине радиочастотах Концерна АЛЕКС в соответствии с лицензией Госкомсвязи Украины № 2061 от 01.03.2001 г. Это упрощает для потребителя процесс внедрения собственной системы связи за счет отсутствия необходимости в оформлении лицензии на радиочастоты.

Системы связи большого радиуса действия


Система с диспетчером
Эта система состоит из центральной диспетчерской базовой станции, оборудованной антенной с большой высотой подвеса и нескольких портативных и автомобильных радиостанций.

Эта система обеспечивает возможность радиосвязи мобильных станций с диспетчером во всей зоне действия (до 80 км) и связь мобильных станций между собой на расстоянии 2-5 км.

 

Система с ретранслятором


В отличие от системы с диспетчером, все радиостанции во всей зоне действия связи могут связываться между собой через ретранслятор. Для работы системы необходимо две частоты (одна для приема, другая для передачи).

В диапазоне 130- 170 МГц и разносе между частотами приема и передачи не менее 0,6 МГц, а в диапазоне 400-490 МГц не менее 4 МГц. Для построения таких систем связи необходимо наличие пары частот. В этом случае протяженность участка, охваченного связью, может быть неограничена, так как частоты могут повторяться на достаточном удалении ретрансляторов друг от друга. Например, на приведенной выше схеме Канал 1 может быть повторен после Канала 2.

 

Системы дистанционного управления базовой радиостанцией


Как известно, основными факторами, определяющими качество, надежность и дальность радиосвязи, являются мощность передатчика, чувствительность приемника и высота подъема передающей антенны.
Обычна ситуация, при которой оператор - диспетчер ведомственной системы радиосвязи - находится в здании, где подъем антенны на требуемую высоту не представляется возможным. Поэтому ретранслятор с передающей антенной приходится размещать на значительном удалении от оператора и, как следствие, управлять ими на расстоянии.
Систем дистанционного управления (СДУ), решающих такую задачу, существует немного, причем некоторые зарубежные разработки имеют высокую стоимость.
Система "АЛКОМ-СДУ", представляющая собой изготавливаемый Концерном АЛЕКС настольный диспетчерский пульт в комплекте с базовым и дополнительным оборудованием, полностью решает данную проблему.
Устройство позволяет управлять по выделенной двухпроводной линии протяженностью до 20 км базовой радиостанцией. В качестве последней используются мобильные радиостанции ICOM серии IC-F320/420/320S/420S/310/410/310S/410S.

Мобильные цифровые ретрансляторы (репитеры)


Радиосвязью для профессиональной деятельности пользуются самые различные организации и службы.
Дальность связи между двумя портативными радиостанциями обуславливается их выходной мощностью, ландшафтом местности и составляет от 2 до 5 км. Для обеспечения большего радиуса действия, наиболее широкое применение получили системы связи с использованием ретрансляторов, обеспечивающих дальность связи от 15 до30 км. Это позволяет увеличить расстояние между радиостанциями от 30 до 60 км.
Под ретранслятором обычно подразумевается базовое оборудование, установленное стационарно в населенном пункте. Об установке постоянных ретрансляторов для выездных оперативных групп, на отдаленных либо обособленных объектах, промплощадках, малых населенных пунктах и экспедициях, речь вести не приходилось виду того, что, потребность в связи может возникать в различных районах и носит кратковременный характер.
Такие задачи решают мобильные цифровые ретрансляторы (репитеры), предлагаемые Концерном АЛЕКС.
Концерн предлагает три варианта мобильных ретрансляторов.
Первый вариант - MRP-AL — имеет блочную компоновку и состоит из двух автомобильных радиостанций, аккумуляторных батарей, дуплексера и автомобильной или базовой антенны с кабелем. Комплектация может изменяться по желанию заказчика. Блочность позволяет при выходе из строя в одной из станций "передатчика" или "приемника" переключением станций между собой привести его в рабочее состояние.
Ретранслятор собран в удобном ударопрочном корпусе. Для приведения ретранслятора в рабочее состояние достаточно открыть крышку, подсоединить антенну, включить питание и установить канал на котором будут работать мобильные станции. Наряду со встроенной аккумуляторной батареей, обеспечивающей работу ретранслятора в течение двух часов, возможность подключения к бортовой сети автомобиля или сети 220В, в этом случае встроенная аккумуляторная батарея подзаряжается.
Второй вариант - VXR-AL-25V — является оригинальной разработкой нашей компании, имеет 25 Вт —100% цикла с низким энергопотреблением — 4 А при максимальной мощности. Данный ретранслятор предназначен для установки в автомобиле либо базовой установки.
Третий вариант - MRP-AL-25T — это ретранслятор типа VXR-AL-25V, выполн енный в прочно м металлическом кейсе, куда кроме ретранслятора входит дуплексный фильтр, источник питания от сети 220 VAC, а также автомобильная аккумуляторная батарея на 7 А и зарядное устройство для нее.

В качестве носимых терминалов, используемых для обеспечения подвижной связи при помощи мобильного ретранслятора, предлагаются радиостанции соответствующих частотных диапазонов ведущих фирм — производителей, таких как KENWOOD, ICOM, отвечающих военному стандарту MIL-810. Ретранслятор, не оснащенный контроллером, может комплектоваться более простыми и дешевыми терминалами (без транкинговой платы и клавиатуры). Для обеспечения секретности переговоров в станциях возможна установка шифраторов речи. Немаловажным преимуществом мобильного ретранслятора является то, что при установке в его корпус транкингового контроллера (SmarTrank-II, МРТ-1327 или другого), пользователь получит соответствующие системы профессиональной радиосвязи. Они дают возможность организации групп и подгрупп мобильных абонентов, их выхода в телефонную сеть общего пользования (при подключении ретранслятора к линии) установки многоуровневой системы приоритетов и многие другие важные функции.
Без сомнения, уникальные, функциональные возможности, простота и удобство в эксплуатации и обращении с ними, сделают мобильный ретранслятор необходимым снаряжением для силовых структур, спецслужб, лесных и охотничьих хозяйств, крупных промпредприятий с развитой инфраструктурой, аварийных и спасательных служб, подразделений МЧС.

Основные технические характеристики MRP-AL

  • Диапазон рабочих частот, МГц
    146-174
    400-430
    450-470
  • Максимальное количество каналов: 32
    Примечание. Все рабочие каналы должны быть сгруппированы в полосу частот до 500 кГц.
  • Шаг сетки частот. КГц 12.5 или 25.0
  • Класс излучения: 8К50F3Е или 16КОF3Е
  • Стабильность частоты, % + - 0.0005
  • Напряжение питания, В: 13.6 (+-10%) В
  • Потребляемый ток (передача\прием \ожидание), А: 5.5\1 \0.4
    Примечание. При использовании в составе ретранслятора контроллера SmarTrunk II ток потребления увеличивается на 0.5 А.
  • Диапазон рабочих температур, гр. С. от -30 до +60

    ПАРАМЕТРЫ ПЕРЕДАТЧИКА
  • Выходная мощность в антенну, Вт: до 15
  • Уровень побочных излучений, Дб -70
  • Девиация частоты, кГц +-2.5 или +-5.0

    ПАРАМЕТРЫ ПРИЕМНИКА
  • Чувствительность (12дБ SINAD), мкВ:
    0.22(АМР-15)
    0.25(АМР-40\45)
  • Избирательность по соседнему каналу, дБ -70
  • Интермодуляционная избирательность, дБ -65

    ОСОБЕННОСТИ
  • гибкое конфигурирование под задачи заказчика;
  • различные варианты конструктивного исполнения;
  • три основных режима работы - базовая станция, репитер, SmarTrunk II (некоторые режимы по желанию заказчика могут не поддерживаться );
  • питание осуществляется от любого из перечисленных источников: встроенный аккумулятор (емкость определяется заказчиком), сеть переменного тока с напряжением 220В, бортовая сеть автомобиля 12В;
  • ретранслятор поставляется с автомобильной или базовой антенной;
  • ретранслятор в базовом исполнении поддерживает сигнализацию типа CTCSS и DCS;
  • при использовании дополнительной логической платы обеспечивается поддержка 2-х и 5-ти тоновой сигнализации для ограничения доступа в систему незарегистрированных пользователей;
  • возможно обеспечение режима маскирования речи при установке в абонентские станции специальных плат.

    ВНИМАНИЕ!
    Имея базовую модель, Концерн АЛЕКС оговаривает в каждом конкретном случае комплектацию ретранслятора, необходимую заказчику, а также оказывает техническую поддержку в ходе его эксплуатации.

    VXR-AL-25V
    VXR-AL-25V

    MRP-AL-25T
    MRP-AL-25T

    Системы связи для водолазов и подводного плавания


    Приемопередатчик и приемник для подводного использования, предназначен для связи, приема речевых сигналов с другими приемопередатчиками GSM или М101А под водой (или с другими приемопередатчиками, работающими на частоте 32.768кГц), и с наземными М103 и М105.
    Основные особенности:
  • предназначено для использования с маской Neptune II(имеется DIN соединение), также возможно использование со стандартными масками или с масками, закрывающими лицо полностью (full face mask);
  • включение на прием автоматическое;
  • тип сигнала-H-SSB;
  • частотный диапазон-32.768кГц;
  • радиус действия - 200 м;
  • глубина - 40м;
  • источник питания -9В (alkaline);
  • время непрерывной работы батарей - 8ч;
  • сигнал "слабый заряд батареи" (менее 7В) -1бип-сигнал\каждые 60 сек;
  • вес 280гр.-350гр.
    Приемопередатчики для наземного использования, предназначены для связи с подводными приемопередатчиками, напр., GSM или М101А; 3М-103 (отличается небольшим весом, возможно ношение на поясе, для связи имеется гарнитура с микрофоном); 4М-105А (имеет встроенный громкоговоритель, микрофон, питание происходит от 8 батарей (1.5 alkaline) или от внешнего источника питания 12В).
    Основные особенности:
  • включение на передачу при использовании кнопкиРТТ;
  • включение на прием автоматическое;
  • тип сигнала - H-SSB;
  • частотный диапазон -32.768кГц;
  • радиус действия - 200м;
  • источники питания 3М-103( 9В alkaline);
    4М-105(8*1.5В alkaline\внеш.12В);
  • время непрерывной работы батарей — 8ч;
  • сигнал "слабый заряд батареи" (менее 7В) — 1бип-сигнал\каждые 60 сек;
  • вес от 1кг. -1.8кг.

    Воутеры


    Для расширения зоны действия систем симплексной связи и систем с ретранслятором Концерн АЛЕКС предлагает дополнять их воутерами.
    Воутер — модульная система выбора оптимального по наилучшему соотношению "сигнал/шум" (Signal-to-Noise Ratio - SNR) удалленого приемника из нескольких подключенных, в которой для изменения SNR используются отдельные для каждого канала цифровые сигнальные процессоры (Didital Signal Processor-DSPs).
    При этом количество подключаемых удаленных приемников (или ретронслятор) может лежать в пределах от 2-х до 12-ти, что достигается простым добавлением (удалением) интерфейсных канальных плат в главном модуле.
    Наиболее распрастраненным случаем, когда целесообразно, и к тому же экономически эффективно использование данной системы является ситуация, когда с одной стороны мобильными и портативными радиосредствами обеспечивается прием сигналов от ретранслятора, а с другой стороны ретронслятор не может "слышать" мобильные\портативные радиосредства (что обусловлено их малыми выходными мощностями). В данном случае, размещая удаленные приемники в местах, откуда сигнал от мобильных\портативных радиосредств не достигает ретронслятора, и подключая их к системе (возможно использование радиорелейных, проводных или оптоволоконных линий связи), обеспечивается выбор оптимального по наилучшему соотношению SNR удаленного приемника из нескольких подключенных и передачу аудио сигнала от него на ретронслятор с большей выходной мощностью, обеспечивая тем самым требуемую площадь радио покрытия (т.е. каждый мобильный\портативный абонент может "слышать" каждого, а ретронслятор может "слышать"всех.
    Система на основе использования воутера просто незаменима также в случае, когда какое-то важное сообщение передается одновременно по нескольким линиям связи или от нескольких передатчиков на раличных частотах, но в одном частотном диапозоне. При таком "разнессеном приеме" данное сообщение поступает от нескольких приемников на воутер который и обеспечивает выбор оптимального по наилучшему соотношению "сигнал\шум".
    На практике применение воутеров приводит к увеличению радиуса действия системы связи от 30-50 км до 60-100 км.
    Использование воутеров возможно как в конвенциональных, так и в транкин говых системах протоколов SmartTrunk-II, LTR.
Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru