Цены и наличие товара Вы можете уточнить здесь

Системы связи малого радиуса действия >>
Системы связи большого радиуса действия >>
Система с ретранслятором >>
Системы дистанционного управления базовой радиостанцией >>
Мобильные цифровые ретрансляторы (репитеры) >>
Системы связи для водолазов и подводного плавания >>
Воутеры >>

Системы связи малого радиуса действия


Такие системы используются для обеспечения локальной связи на небольшой территории. Как правило, это связь в зданиях или вне зданиях на расстоянии 1-2 км.

Для таких систем Концерном АЛЕКС предлагаются радиостанции ALCOM AL-446 мощностью 0,5 Вт и ICOM IC-F21 мощностью до 4 Вт, работающие на выделеных по всей Украине радиочастотах Концерна АЛЕКС в соответствии с лицензией Госкомсвязи Украины № 2061 от 01.03.2001 г. Это упрощает для потребителя процесс внедрения собственной системы связи за счет отсутствия необходимости в оформлении лицензии на радиочастоты.

Системы связи большого радиуса действия


Система с диспетчером
Эта система состоит из центральной диспетчерской базовой станции, оборудованной антенной с большой высотой подвеса и нескольких портативных и автомобильных радиостанций.

Эта система обеспечивает возможность радиосвязи мобильных станций с диспетчером во всей зоне действия (до 80 км) и связь мобильных станций между собой на расстоянии 2-5 км.

 

Система с ретранслятором


В отличие от системы с диспетчером, все радиостанции во всей зоне действия связи могут связываться между собой через ретранслятор. Для работы системы необходимо две частоты (одна для приема, другая для передачи).

В диапазоне 130- 170 МГц и разносе между частотами приема и передачи не менее 0,6 МГц, а в диапазоне 400-490 МГц не менее 4 МГц. Для построения таких систем связи необходимо наличие пары частот. В этом случае протяженность участка, охваченного связью, может быть неограничена, так как частоты могут повторяться на достаточном удалении ретрансляторов друг от друга. Например, на приведенной выше схеме Канал 1 может быть повторен после Канала 2.

 

Системы дистанционного управления базовой радиостанцией


Как известно, основными факторами, определяющими качество, надежность и дальность радиосвязи, являются мощность передатчика, чувствительность приемника и высота подъема передающей антенны.
Обычна ситуация, при которой оператор - диспетчер ведомственной системы радиосвязи - находится в здании, где подъем антенны на требуемую высоту не представляется возможным. Поэтому ретранслятор с передающей антенной приходится размещать на значительном удалении от оператора и, как следствие, управлять ими на расстоянии.
Систем дистанционного управления (СДУ), решающих такую задачу, существует немного, причем некоторые зарубежные разработки имеют высокую стоимость.
Система "АЛКОМ-СДУ", представляющая собой изготавливаемый Концерном АЛЕКС настольный диспетчерский пульт в комплекте с базовым и дополнительным оборудованием, полностью решает данную проблему.
Устройство позволяет управлять по выделенной двухпроводной линии протяженностью до 20 км базовой радиостанцией. В качестве последней используются мобильные радиостанции ICOM серии IC-F320/420/320S/420S/310/410/310S/410S.

Мобильные цифровые ретрансляторы (репитеры)


Радиосвязью для профессиональной деятельности пользуются самые различные организации и службы.
Дальность связи между двумя портативными радиостанциями обуславливается их выходной мощностью, ландшафтом местности и составляет от 2 до 5 км. Для обеспечения большего радиуса действия, наиболее широкое применение получили системы связи с использованием ретрансляторов, обеспечивающих дальность связи от 15 до30 км. Это позволяет увеличить расстояние между радиостанциями от 30 до 60 км.
Под ретранслятором обычно подразумевается базовое оборудование, установленное стационарно в населенном пункте. Об установке постоянных ретрансляторов для выездных оперативных групп, на отдаленных либо обособленных объектах, промплощадках, малых населенных пунктах и экспедициях, речь вести не приходилось виду того, что, потребность в связи может возникать в различных районах и носит кратковременный характер.
Такие задачи решают мобильные цифровые ретрансляторы (репитеры), предлагаемые Концерном АЛЕКС.
Концерн предлагает три варианта мобильных ретрансляторов.
Первый вариант - MRP-AL — имеет блочную компоновку и состоит из двух автомобильных радиостанций, аккумуляторных батарей, дуплексера и автомобильной или базовой антенны с кабелем. Комплектация может изменяться по желанию заказчика. Блочность позволяет при выходе из строя в одной из станций "передатчика" или "приемника" переключением станций между собой привести его в рабочее состояние.
Ретранслятор собран в удобном ударопрочном корпусе. Для приведения ретранслятора в рабочее состояние достаточно открыть крышку, подсоединить антенну, включить питание и установить канал на котором будут работать мобильные станции. Наряду со встроенной аккумуляторной батареей, обеспечивающей работу ретранслятора в течение двух часов, возможность подключения к бортовой сети автомобиля или сети 220В, в этом случае встроенная аккумуляторная батарея подзаряжается.
Второй вариант - VXR-AL-25V — является оригинальной разработкой нашей компании, имеет 25 Вт —100% цикла с низким энергопотреблением — 4 А при максимальной мощности. Данный ретранслятор предназначен для установки в автомобиле либо базовой установки.
Третий вариант - MRP-AL-25T — это ретранслятор типа VXR-AL-25V, выполн енный в прочно м металлическом кейсе, куда кроме ретранслятора входит дуплексный фильтр, источник питания от сети 220 VAC, а также автомобильная аккумуляторная батарея на 7 А и зарядное устройство для нее.

В качестве носимых терминалов, используемых для обеспечения подвижной связи при помощи мобильного ретранслятора, предлагаются радиостанции соответствующих частотных диапазонов ведущих фирм — производителей, таких как KENWOOD, ICOM, отвечающих военному стандарту MIL-810. Ретранслятор, не оснащенный контроллером, может комплектоваться более простыми и дешевыми терминалами (без транкинговой платы и клавиатуры). Для обеспечения секретности переговоров в станциях возможна установка шифраторов речи. Немаловажным преимуществом мобильного ретранслятора является то, что при установке в его корпус транкингового контроллера (SmarTrank-II, МРТ-1327 или другого), пользователь получит соответствующие системы профессиональной радиосвязи. Они дают возможность организации групп и подгрупп мобильных абонентов, их выхода в телефонную сеть общего пользования (при подключении ретранслятора к линии) установки многоуровневой системы приоритетов и многие другие важные функции.
Без сомнения, уникальные, функциональные возможности, простота и удобство в эксплуатации и обращении с ними, сделают мобильный ретранслятор необходимым снаряжением для силовых структур, спецслужб, лесных и охотничьих хозяйств, крупных промпредприятий с развитой инфраструктурой, аварийных и спасательных служб, подразделений МЧС.

Основные технические характеристики MRP-AL

  • Диапазон рабочих частот, МГц
    146-174
    400-430
    450-470
  • Максимальное количество каналов: 32
    Примечание. Все рабочие каналы должны быть сгруппированы в полосу частот до 500 кГц.
  • Шаг сетки частот. КГц 12.5 или 25.0
  • Класс излучения: 8К50F3Е или 16КОF3Е
  • Стабильность частоты, % + - 0.0005
  • Напряжение питания, В: 13.6 (+-10%) В
  • Потребляемый ток (передача\прием \ожидание), А: 5.5\1 \0.4
    Примечание. При использовании в составе ретранслятора контроллера SmarTrunk II ток потребления увеличивается на 0.5 А.
  • Диапазон рабочих температур, гр. С. от -30 до +60

    ПАРАМЕТРЫ ПЕРЕДАТЧИКА
  • Выходная мощность в антенну, Вт: до 15
  • Уровень побочных излучений, Дб -70
  • Девиация частоты, кГц +-2.5 или +-5.0

    ПАРАМЕТРЫ ПРИЕМНИКА
  • Чувствительность (12дБ SINAD), мкВ:
    0.22(АМР-15)
    0.25(АМР-40\45)
  • Избирательность по соседнему каналу, дБ -70
  • Интермодуляционная избирательность, дБ -65

    ОСОБЕННОСТИ
  • гибкое конфигурирование под задачи заказчика;
  • различные варианты конструктивного исполнения;
  • три основных режима работы - базовая станция, репитер, SmarTrunk II (некоторые режимы по желанию заказчика могут не поддерживаться );
  • питание осуществляется от любого из перечисленных источников: встроенный аккумулятор (емкость определяется заказчиком), сеть переменного тока с напряжением 220В, бортовая сеть автомобиля 12В;
  • ретранслятор поставляется с автомобильной или базовой антенной;
  • ретранслятор в базовом исполнении поддерживает сигнализацию типа CTCSS и DCS;
  • при использовании дополнительной логической платы обеспечивается поддержка 2-х и 5-ти тоновой сигнализации для ограничения доступа в систему незарегистрированных пользователей;
  • возможно обеспечение режима маскирования речи при установке в абонентские станции специальных плат.

    ВНИМАНИЕ!
    Имея базовую модель, Концерн АЛЕКС оговаривает в каждом конкретном случае комплектацию ретранслятора, необходимую заказчику, а также оказывает техническую поддержку в ходе его эксплуатации.

    VXR-AL-25V
    VXR-AL-25V

    MRP-AL-25T
    MRP-AL-25T

    Системы связи для водолазов и подводного плавания


    Приемопередатчик и приемник для подводного использования, предназначен для связи, приема речевых сигналов с другими приемопередатчиками GSM или М101А под водой (или с другими приемопередатчиками, работающими на частоте 32.768кГц), и с наземными М103 и М105.
    Основные особенности:
  • предназначено для использования с маской Neptune II(имеется DIN соединение), также возможно использование со стандартными масками или с масками, закрывающими лицо полностью (full face mask);
  • включение на прием автоматическое;
  • тип сигнала-H-SSB;
  • частотный диапазон-32.768кГц;
  • радиус действия - 200 м;
  • глубина - 40м;
  • источник питания -9В (alkaline);
  • время непрерывной работы батарей - 8ч;
  • сигнал "слабый заряд батареи" (менее 7В) -1бип-сигнал\каждые 60 сек;
  • вес 280гр.-350гр.
    Приемопередатчики для наземного использования, предназначены для связи с подводными приемопередатчиками, напр., GSM или М101А; 3М-103 (отличается небольшим весом, возможно ношение на поясе, для связи имеется гарнитура с микрофоном); 4М-105А (имеет встроенный громкоговоритель, микрофон, питание происходит от 8 батарей (1.5 alkaline) или от внешнего источника питания 12В).
    Основные особенности:
  • включение на передачу при использовании кнопкиРТТ;
  • включение на прием автоматическое;
  • тип сигнала - H-SSB;
  • частотный диапазон -32.768кГц;
  • радиус действия - 200м;
  • источники питания 3М-103( 9В alkaline);
    4М-105(8*1.5В alkaline\внеш.12В);
  • время непрерывной работы батарей — 8ч;
  • сигнал "слабый заряд батареи" (менее 7В) — 1бип-сигнал\каждые 60 сек;
  • вес от 1кг. -1.8кг.

    Воутеры


    Для расширения зоны действия систем симплексной связи и систем с ретранслятором Концерн АЛЕКС предлагает дополнять их воутерами.
    Воутер — модульная система выбора оптимального по наилучшему соотношению "сигнал/шум" (Signal-to-Noise Ratio - SNR) удалленого приемника из нескольких подключенных, в которой для изменения SNR используются отдельные для каждого канала цифровые сигнальные процессоры (Didital Signal Processor-DSPs).
    При этом количество подключаемых удаленных приемников (или ретронслятор) может лежать в пределах от 2-х до 12-ти, что достигается простым добавлением (удалением) интерфейсных канальных плат в главном модуле.
    Наиболее распрастраненным случаем, когда целесообразно, и к тому же экономически эффективно использование данной системы является ситуация, когда с одной стороны мобильными и портативными радиосредствами обеспечивается прием сигналов от ретранслятора, а с другой стороны ретронслятор не может "слышать" мобильные\портативные радиосредства (что обусловлено их малыми выходными мощностями). В данном случае, размещая удаленные приемники в местах, откуда сигнал от мобильных\портативных радиосредств не достигает ретронслятора, и подключая их к системе (возможно использование радиорелейных, проводных или оптоволоконных линий связи), обеспечивается выбор оптимального по наилучшему соотношению SNR удаленного приемника из нескольких подключенных и передачу аудио сигнала от него на ретронслятор с большей выходной мощностью, обеспечивая тем самым требуемую площадь радио покрытия (т.е. каждый мобильный\портативный абонент может "слышать" каждого, а ретронслятор может "слышать"всех.
    Система на основе использования воутера просто незаменима также в случае, когда какое-то важное сообщение передается одновременно по нескольким линиям связи или от нескольких передатчиков на раличных частотах, но в одном частотном диапозоне. При таком "разнессеном приеме" данное сообщение поступает от нескольких приемников на воутер который и обеспечивает выбор оптимального по наилучшему соотношению "сигнал\шум".
    На практике применение воутеров приводит к увеличению радиуса действия системы связи от 30-50 км до 60-100 км.
    Использование воутеров возможно как в конвенциональных, так и в транкин говых системах протоколов SmartTrunk-II, LTR.
Что такое радиоволны
Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати свет также относится к электромагнитным волнам, что и определяет их весьма схожие свойства (отражение, преломление, затухание и т.п.).
Радиоволны переносят через пространство энергию, злучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.
Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.
Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны (в метрах) рассчитывается как отношение скорости света взятой в метрах к частоте электромагнитного излучения взятой в МГц.
Такое соотношение показывает, например, что на частоте 1 МГц длина волны составляет 300 метров.
С увеличением частоты длина волны уменьшается, с уменьшением частоты длина волны увеличивается. В дальнейшем мы убедимся, что знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности. Кстати, на этом основано применение электромагнитных волн в радиолокации. Еще одним полезным свойством электромагнитных волн (впрочем, как и всяких других волн) является их способность огибать тела на своем пути. Но это возможно лишь в том случае, когда размеры тела меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить – вспомните американский самолет-невидимку «Stealth».
Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него. Например, поток энергии электромагнитного излучения Солнца на поверхность Земли достигает 1 киловатта на квадратный метр, а поток энергии средневолновой вещательной радиостанции – всего тысячные и даже миллионные доли ватта на квадратный метр.
Как распространяются радиоволны:
Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.
Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота). Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.
Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном менялись волны от 1 до 30 км.
Волны короче 100 метров вообще считались непригодными для дальней связи.
Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.
Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой. Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.
Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.
Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.
Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.
Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.
Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны). Возможность направленного излучения волн позволяет повысить эффективность системы связи.
Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящихся не в створе луча.
При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.
Необходимо отметить, что с уменьшением длины волны возрастает их затухание и поглощение в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, сильно ограничивающей дальность связи.
Мы выяснили, что волны радиодиапазона обладают различными свойствами распространения, и каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества.

Информация взята из сайта http://www.lr.kiev.ua