Принцип работы системы AVL


Необходимость оперативного получения навигационной информации привела к формированию обширной комплексной прикладной области транспортно-диспетчерских информационных технологий. Главными потребителями таких услуг стали автомобильные, железнодорожные и морские виды транспорта. Навигационная информация представляет несомненный интерес для инкассаторских служб банков, подразделений МВД, служб безопасности, государственных и коммерческих предприятий, мобильных подразделений прочих организаций, занимающихся перевозками ценных либо опасных грузов.
Принцип работы таких систем состоит в следующем. Навигационная антенна и миниатюрный приемник, установленные на автомобиле, принимают и обрабатывают сигналы глобальной спутниковой навигационной системы. По радиоканалу навигационные параметры передаются на диспетчеркий пункт, где на экране размещена электронная карта местности. На ней в автоматическом режиме отображается оперативная обстановка, поэтому дежурный всегда знает, где и в каком состоянии находятся его автомобили. Информация о состоянии транспортных средств снимается с телесигнализационных датчиков, установленных на важнейших узлах машин. Работа с картой полностью автоматизирована: можно на компьютере выделить несколько окон и в каждом организовать слежение за одной, несколькими или всеми машинами. Программа работы с картой сама выбирает необходимый масштаб, переходит с листа на лист и т.п. Кроме картографического терминала, у диспетчера имеется текстовый, на котором в виде таблицы отображается необходимая информация: номер машины, название улицы движения, скорость, расстояние до перекрестка и другие данные. Вся информация записывается в архив и, при необходимости, последовательность событий и действий персонала может быть восстановлена.

Этап I (прием GPS-информации и передача ее на главный диспетчерский центр)
На каждом пользовательском транспортном средстве устанавливается мобильный блок модема с GPS приемником, который обеспечивает прием GPS-информации со спутников и ее обработку. При подключении данного блока к мобильной радиостанции посредством интерфейсного кабеля обеспечивается передача обработанной GPS-информации по линиям используемой транкинговой либо другой системы связи на главный диспетчерский центр.
Этап II (прие м GPS-информации на главном диспетчерском центре и передача ее на РС главного диспетчерского центра)
На главном диспетчерском центре радиостанция обеспечивает прием обработанной GPS-информации и при подключении его посредством интерфейсного кабеля к базовому блоку модема с GPS-приемником осуществляет передачу принятой информации на ПК главного диспетчерского центра, на котором установлено соответствующее программное обеспечение.
Этап III (предоставление услуг пользователям системы AVL)
Пользователь системы AVL, имея в наличие ПК с необходимым программным обеспечением, и подключившись к главному диспетчерскому центру (посредством используемой сети передачи данных -локальной, глобальной или Internet), может воспользоваться теми услугами, которые определил для него провайдер системы AVL на главном диспетчерском центре.
На практике обычна ситуация, когда организации требуется контроль за перемещением своих транспортных средств в пределах города, страны или за границей, причем не обязательно в реальном времени. В то же время возможностей и необходимости в развертывании собственной системы радиосвязи, использовании услуг оператора мобильной связи или AVL-провайдера у нее может не быть. В данном случае лучшим решением является использование логера - миниатюрного и относительно недорогого устройства, устанавливаемого совместно с GPS-приемником на транспортных средствах. Оно, по сути, выполняет роль применяемых в авиации "черных ящиков", фиксируя маршрут перемещения автомобиля и (опционально) параметры его состояния от любых подключенных датчиков. Информация о местоположении транспортного средства, поступающая от GPS-приемника в течение пребывания на маршруте, записывается логером в цифровом виде на съемную Chip-карту и считывается с нее в диспетчерском пункте или офисе.
GPS - схема

К вопросу об истории радиосвязи
Если разобраться глубже, то радиосвязь (принято ее называть обобщенным словом "радио") началась не с А. Попова и Г. Маркони. Как и многие другие успехи в электричестве и магнетизме, она базируется на изобретениях и открытиях английского физика Майкла Фарадея (1791-1867) и работах выдающегося английского математика и физика Джеймса Клерка Максвелла (1831-1879).

Среди многих открытий Фарадея было разъяснение им в 1831 г. принципа электромагнитной индукции. Обладая даром предвидения, он писал в 1832 г.: "Я полагаю, что распространение магнитных сил от магнитного полюса, волн на поверхности возмущенной воды и звука в воздухе имеют родственную основу. Иными словами, я считаю, что теория колебаний будет применима к этому явлению, равно как и к звуку и, весьма вероятно, к свету".

Максвелл был согласен с этим утверждением. Однако наука развивалась медленно, и лишь в 1855 г. он опубликовал статью "О силовых линиях Фарадея", а в 1864 г. дал миру свою ошеломляющую работу "Динамическая теория электромагнитного поля".

Эта статья содержала то, что мы сейчас называем уравнениями Максвелла. Она объясняла все известные явления электромагнетизма, а также предсказывала существование радиоволн и возможность их распространения со скоростью света.

22 ноября 1875 г. американский изобретатель и предприниматель Томас Алва Эдисон (1847-1931) наблюдал, как после возникновения сильной искры между полюсами индуктора в рассыпанных на столе угольных зернах проскакивали искры, он записал тогда в свой дневник о наблюдении "эфирной силы". Hо потом как-то забыл об этом. По крайней мере до 1883 г.

В 1887 г. теоретические выводы Максвелла были экспериментально подтверждены немецким физиком Генрихом Рудольфом Герцем (Херцем) (1857-1894). Используя искровой передатчик и рамочную антенну с небольшим зазором (вибратор Герца) в качестве приемника, он передавал и принимал радиоволны в своей лаборатории в Карлсруэ. Более того, он применил отражательное устройство для обнаружения стоячих волн и показал, что радиоволны подчиняются всем законам геометрической оптики, включая рефракцию и поляризацию. Впервые дал описание внешнего фотоэффекта, разрабатывал теорию резонансного контура, изучал свойства катодных лучей и влияние ультрафиолетовых лучей на электрический разряд.

Пионером самой идеи радиосвязи по праву можно считать и болгарского ученого Петра Атанасова (Хаджиберовича) Берона (1800-1871), который в приложении к III тому (с. 906-944) семитомной "Панепистемии" (панепистемия - всенаука, т. е. единая наука существующего мира; французское издание периода 1861-1870 гг. хранится в Национальной библиотеке св. Кирилла и Мефодия в Софии) приводит свой проект беспроволочной передачи сообщений как по суше, так и по воде. Проект содержал многие технические чертежи будущего беспроволочного телеграфа.

Строго говоря, практическая эра радиосвязи берет свой отсчет с 1883 г., когда Эдисон открыл названный его именем эффект, пытаясь продлить срок службы созданной им ранее лампы с угольной нитью введением в ее вакуумный баллон металлического электрода. При этом он обнаружил, что если приложить к электроду положительное напряжение, то в вакууме между этим электродом и нитью протекает ток. Это явление, которое, к слову сказать, было единственным фундаментальным научным открытием великого изобретателя, лежит в основе всех электронных ламп и всей электроники дотранзисторного периода. Им были опубликованы материалы по так называемому эффекту Эдисона и был получен соответствующий патент. Однако Эдисон не довел свое открытие до конечных результатов.

Некоторые критики первой половины XX-го столетия выдавали данный факт за доказательство того, что он был просто настойчивым ремесленником, а не великим ученым. Защищая же Эдисона, историки отмечали, что в то время он был всецело занят многими другими изобретениями и организацией всевозможных производств в области электрорадиотехники: в 1882 г. при его участии была пущена первая электростанция на ул. Пирл-Стрит в Нью-Йорке, и в 1883 г. Эдисон был поглощен многими финансовыми, организационными и техническими проблемами. В последующие годы он создал множество приборов и устройств (в том числе мощные электогенераторы, фонограф, прототип диктофона, железо-никилиевый аккумулятор и др.)