Принцип работы системы AVL


Необходимость оперативного получения навигационной информации привела к формированию обширной комплексной прикладной области транспортно-диспетчерских информационных технологий. Главными потребителями таких услуг стали автомобильные, железнодорожные и морские виды транспорта. Навигационная информация представляет несомненный интерес для инкассаторских служб банков, подразделений МВД, служб безопасности, государственных и коммерческих предприятий, мобильных подразделений прочих организаций, занимающихся перевозками ценных либо опасных грузов.
Принцип работы таких систем состоит в следующем. Навигационная антенна и миниатюрный приемник, установленные на автомобиле, принимают и обрабатывают сигналы глобальной спутниковой навигационной системы. По радиоканалу навигационные параметры передаются на диспетчеркий пункт, где на экране размещена электронная карта местности. На ней в автоматическом режиме отображается оперативная обстановка, поэтому дежурный всегда знает, где и в каком состоянии находятся его автомобили. Информация о состоянии транспортных средств снимается с телесигнализационных датчиков, установленных на важнейших узлах машин. Работа с картой полностью автоматизирована: можно на компьютере выделить несколько окон и в каждом организовать слежение за одной, несколькими или всеми машинами. Программа работы с картой сама выбирает необходимый масштаб, переходит с листа на лист и т.п. Кроме картографического терминала, у диспетчера имеется текстовый, на котором в виде таблицы отображается необходимая информация: номер машины, название улицы движения, скорость, расстояние до перекрестка и другие данные. Вся информация записывается в архив и, при необходимости, последовательность событий и действий персонала может быть восстановлена.

Этап I (прием GPS-информации и передача ее на главный диспетчерский центр)
На каждом пользовательском транспортном средстве устанавливается мобильный блок модема с GPS приемником, который обеспечивает прием GPS-информации со спутников и ее обработку. При подключении данного блока к мобильной радиостанции посредством интерфейсного кабеля обеспечивается передача обработанной GPS-информации по линиям используемой транкинговой либо другой системы связи на главный диспетчерский центр.
Этап II (прие м GPS-информации на главном диспетчерском центре и передача ее на РС главного диспетчерского центра)
На главном диспетчерском центре радиостанция обеспечивает прием обработанной GPS-информации и при подключении его посредством интерфейсного кабеля к базовому блоку модема с GPS-приемником осуществляет передачу принятой информации на ПК главного диспетчерского центра, на котором установлено соответствующее программное обеспечение.
Этап III (предоставление услуг пользователям системы AVL)
Пользователь системы AVL, имея в наличие ПК с необходимым программным обеспечением, и подключившись к главному диспетчерскому центру (посредством используемой сети передачи данных -локальной, глобальной или Internet), может воспользоваться теми услугами, которые определил для него провайдер системы AVL на главном диспетчерском центре.
На практике обычна ситуация, когда организации требуется контроль за перемещением своих транспортных средств в пределах города, страны или за границей, причем не обязательно в реальном времени. В то же время возможностей и необходимости в развертывании собственной системы радиосвязи, использовании услуг оператора мобильной связи или AVL-провайдера у нее может не быть. В данном случае лучшим решением является использование логера - миниатюрного и относительно недорогого устройства, устанавливаемого совместно с GPS-приемником на транспортных средствах. Оно, по сути, выполняет роль применяемых в авиации "черных ящиков", фиксируя маршрут перемещения автомобиля и (опционально) параметры его состояния от любых подключенных датчиков. Информация о местоположении транспортного средства, поступающая от GPS-приемника в течение пребывания на маршруте, записывается логером в цифровом виде на съемную Chip-карту и считывается с нее в диспетчерском пункте или офисе.
GPS - схема

О зарубежных УКВ рациях
В настоящее время все больше радиолюбителей приобретают УКВ рации ведущих зарубежных фирм. Добротно сработанные, имеющие “ навороты” на все случаи в жизни, все они имеют, на мой взгляд, существенный недостаток – низкую устойчивость к интермодуляционным помехам. Это объясняется тем, что в погоне за максимально возможной чувствительностью, заведомо выше заявленной, все фирмы–производители применяют на входе приемника усилитель высокой частоты с большим усилением. В этом случае не требуется скрупулезная настройка при массовом производстве.
Входные полосовые фильтры, которые следуют, как правило, за УВЧ, не спасают положения, так как из-за стремления уменьшить их размеры, их конструктивно выполняют с низкой добротностью. Бороться с помехами предлагается установкой в радиостанции тоновых и кодовых шумоподавителей, что не всегда применимо в радиолюбительской практике. Использование внешних антенных фильтров часто не оправдывает себя из-за их высокой стоимости и громоздкости. При желании слушать служебные частоты, антенные фильтры вообще не применимы.
 
 

С генератора ГВЧ 1 подавался немодулированный сигнал с частотой 150,000 МГц и фиксированным уровнем 2500 мкв. Величина напряжения ГВЧ 1 является типичной для сигналов пейджерных передатчиков, имеющих мощность 0,2-1,5 кВт., которые взаимодействуя с сигналами служебных раций образуют комбинационные помехи.
На генераторе ГВЧ 2 была установлена частота 155,000 МГц, а уровень сигнала регулировался таким образом, чтобы появился сигнал комбинационной помехи на частоте 145,000 МГц.
Результаты испытаний сведены в таблицу:
Модель радиостанции
Уровень сигнала вызывающий помеху Мкв.
Alinko DR-130T
316
Alinko DJ-182T
10
Alinko DR-599T
316
Motorola GP-300
2500
Motorola GМ-300
2500
Motorola GP-68
316
YEASU FT-2500
3160
YEASU FT-50R
1,5
Vertex Стандарт C-108
1,5
Из таблицы видно, что наименьшей помехоустойчивостью обладают миниатюрные рации, добротность контуров у которых, стремится к нулю. Кстати эти радиостанции имеют и наивысшую чувствительность - значительно лучше, чем указанные в документации 0,12 Мкв.
Однако эта повышенная чувствительность никак не может быть использована при работе в эфире на наружную антенну - избыточное усиление перегружает преобразователь приемника, вызывая появление множества интермодуляционных помех. Полезный сигнал попросту “тонет” в сигналах десятков других радиостанций слышимых с уровнем ничуть не меньшим. Однако, если подключить внешнюю антенну через конденсатор ёмкостью 1,5–3 пФ., приём становится вполне удовлетворительным. Аналогичный эффект происходит и при подключении внешней антенны через резистор 0,5-1,5 кОм.
Джентльмены, это очень легко проверить !!!
Для борьбы с перегрузкой смесителя , в некоторые модели раций встраивают отключаемый аттенюатор, улучшающий динамический диапазон на величину затухания, но не решающий полностью проблемы.
Для проверки предположения об избыточном усилении УВЧ, в радиостанции Alinko DR-130T был удален тразистор УВЧ Q1, а на его место поставлен конденсатор 10 пФ cоединивший вход и выход УВЧ. После подстройки контуров была измерена чувствительность, которая упала до 0,8-1,0 Мкв. Уровень сигнала вызывающий интермодуляционную помеху изменился с 316 мкВ до 10 мВ !!!
При работе рации на коллиниарную антенну в центре Алматы полностью отсутствовали помехи от других раций в течении недели.
Таким образом предположение об избыточном усилении в УВЧ полностью оправдалось.
Для проверки возможности снижения усиления можно включить на входе приемника аттенюатор и изменяя его затухание проверять чувствительность, пока она не начнет заметно уменьшаться. Обычно избыточное усиление оценивается величинами 25-30 дБ. Следовательно, примерно на такую же величину можно увеличить и интермодуляционную избирательность приёмника.
Уменьшить усиление УВЧ можно разными способами:
В радиостанции Alinko DR-130T был заменен резистор R44 в цепи истока транзистора на другой, величиной 100 Ом и удален шунтирующий конденсатор С125. Вместо резистора R 71 величиной 100 Ом была установлена перемычка. Емкость конденсатора С 124 с 1000 пФ была уменьшена до 15 пФ, а емкость конденсатора С 88 с 22 пФ увеличена до 36 пФ. По этой методике было переделано три радиостанции с неизменно положительным результатом. В радиостанции Alinko DR-599Т усиление было уменьшено путем удаления конденсатора С4 и замыкания второго затвора транзистора Q1 на корпус. В радиостанции YEASU FT-50R был увеличен резистор R 1024 c 220 Ом до 560 Ом и уменьшены переходные емкости С1068 и С1069 до 3 пФ. Все обозначения приведены по приципиальным схемам идущих в комплекте с радиостанциями.
Указанные доработки позволили почти полностью исключить интермодуляционные помехи от других радиостанций, при полном сохранении чувствительности приведенной в инструкции фирмы-производителя. Никаких регулировок производить не потребовалось.
После модернизации уровень сигнала вызывающего появление комбинационной помехи указан в таблице:
Модель рации
Уровень сигнала вызывающий помеху Мкв.
Alinko DR-130T
3160
Alinko DR-599T
1000
YEASU FT-50R
10
В рации Alinko DR-599T дальнейшему росту динамики препятствуют коммутирующие диоды АIR- диапазона, ток через которые лежит в пределах 2,2-3 мА. При включении антенны в обход этих диодов возможно увеличение уровня мешающего сигнала ещё на 500 Мкв. В общем случае, необходимо сохраняя ток через транзистор УВЧ не ниже исходного, снижать усиление вводя ООС и уменьшать переходные емкости до величин порядка 1-5 пФ. Следует, однако отметить, что при изменении переходной емкости на входе УВЧ может расстроится фильтр-пробка снижающий уровень ВЧ-напряжения при передаче, что может привести к выходу транзистора УВЧ из строя. Для исключения этого требуется коррекция емкости входящей в контур фильтра-пробки, в сторону увеличения. Это замечание относится только для автомобильных радиостанций с мощность более 10 Вт.