Цены и наличие товара Вы можете уточнить здесь

IDAS (Icom Digital Advanced System) от Icom

Компания Icom представила систему связи IDAS в 2008 году. Эта система подразумевает переход к цифровым технологиям связи.

IDAS использует технологию NXDN. В таблице Вы можете увидеть её основные характеристики:

Метод доступа FDMA (многостанционный доступ с частотным разделением каналов)
Ширина канала 6.25 кГц (только в цифровом режиме)
Скорость передачи данных 4,800 bps
Быстродействие кодека 3600 bps
Использование трафика голос 2,450 bps, коррекция ошибок 1,150 bps
Модуляция 4-уровневая FSK
Вокодер AMBE+2

Пять основных преимуществ системы IDAS:

1) Плавный переход от аналоговой связи к цифровой связи

IDAS позволяет перейти к цифровой системе связи при существуещей аналоговой системе и оборудовании. Благодаря этому решению не обязательно менять всю систему связи на новую. Систему IDAS можно расширять постепенно.

Пример постепенного перехода от существующей аналоговой к цифровой системе IDAS:

2) Два независимых канала (2 канала по 6.25 KHz в 12.5 KHz)

Увеличивается существующая емкость каналов (12.5 KHz) в 2 раза.

Система характеризуется отличной комбинацией голос/голос, голос/данные, данные/данные.

3) Высокое качество аудио сигнала

Используя новую технологию вокодера AMBE+2, качество системы IDAS превосходит аналоговые FM системы.

При использовании системы IDAS зона покрытия увеличивается на 20% по сравнению с FM системой. Кроме того, благодаря цифрому сигналу отсутсвуют посторонние шумы.

4) Высокая безопасность

IDAS использует 32768 кодов, что обеспечивает высокий уровень защиты информации. Цифровой зашифрованный сигнал невозможно прослушать на аналоговом приемнике.

 

5) Расширенный функциональные возможности системы

IDAS имеет широкие возможности как в аналоговом так и цифровом режиме.

Цифровые оссобенности и функции системы

Смешанная работа аналоговой и цифровой системы Возможны различные комбинации аналоговых и цифровых приемников и передатчиков
RAN (Radio Access Number) Код доступа До 64 RAN кодов в одном канале. Работают аналогично CTCSS в аналоговых системах
Индивидуальный и групповой вызов До 65535 индивидуальных или групповых ID-кодов
Сигнал тревоги При горизонтальном положении радиостанция передает в эфир сигнал тревоги
Передача данных Возможно принимать и отправлять данные или короткие сообщения
Передача сообщений Передача ранее запрограммированных текстовых сообщений (12 символов). Запрограммированные сообщения можно редактировать с помощью клавиатуры на радиостанции
Дистанционное отключение и включение С помощью этой функции можно дистанционно отключить потерянную или украденную радиостанцию и включить ее когда она вернется владельцу
Проверка канала связи При включении абонентская радиостанция получает подтверждение о наличии канала связи
Дистанционная проверка статуса Посылка запроса о статусе абонентской радиостанции
Передача данных GPS GPS данные могут передаваться как в отдельном канале так и в одном канале вместе с голосом
Цифровое шифрование 32768 кода. 63 программируемых кода на один канал

  Аналоговые особенности и функции системы

Встроенный мульти сигналинг Организация группового или селективного вызова с помощью 2-Tone, 5-Tone, DTMF, CTCSS DTCS сигналингами
Стандарты MDC1200 и BIIS1200 Расширенный функционало селективного вызова посредством цифровых пилот сигналов
Расширенные функции сканера Несколько режимов сканирования, управления сканером с клавиатуры радиостанции
Аналоговый голосовой скремблер Типы совместимых скремблеров Инверсионный, Инверсия спектра и Ролинговый

Продукция IDAS

Носимые радиостанции VHF и UHF: серия IC-F3160

  • VHF: 136-174 МГц, UHF: 400-470 МГц/450-520 МГц
  • Совместимы с протоколом NXDN и расширенные цифровые функции 512 каналов, 128 зон
  • Большой мульти-функциональный LCD дисплей
  • Lithium-Ion аккумуляторная батарея большой емкости (2000 мАч 14 часов работы при цикле 5:5:90)
  • Пыле и влаго защита соответсвует стандарту IP55
  • Прочная конструкция соответвует MIL-STD
  • Выходная мощность 5Вт
  • Функция VOX
  • Выбор режима сканирования каналов
  • Аварийный вызов
  • Встроенные 2-Tone/5-Tone/CTCSS/DTCS сигналинг (для аналога FM)
  • Совместимость с MDC 1200 (для аналога FM)
  • Встроенный инверсионный голосовой скремблер, а также возможна установка дополнительных UT-109R/UT-110R (для аналога FM)

 

Мобильные радиостанции VHF и UHF: серия IC-F5060

  • VHF: 136-174 МГц, UHF:400-470 МГц/450-520 МГц
  • Совместимы с протоколом NXDN и расширенные цифровые функции
  • 512 каналов, 128 зон
  • Большой мульти-функциональный LCD дисплей
  • Съёмная передняя панель с дополнительным кабелем RMK-3
  • Аксессуарный разъем D-Sub
  • Выходная мощность 50Вт (VHF), 45Вт (UHF)
  • Пыле и влаго защита соответсвует стандарту IP54
  • Прочная конструкция соответсвует MIL-STD
  • Выбор режима сканирования каналов
  • Встроенные 2-Tone/5-Tone/CTCSS/DTCS сигнаоинги (для аналога FM)
  • Совместимость с MDC-1200 (для аналога FM)
  • Встроенный инверсионный голосовой скремблер, а также возможна установка дополнительных UT-109R/UT-110R (для аналога FM)
  • 8 ячеек памяти для автонабора DTMF и функция AN (для аналога FM)
  • Аварийный вызов

Ретрансляторы VHF и UHF: серии IC-FR5000

  • VHF:136-174 МГц, UHF:400-470 МГц/450-520 МГц
  • Установка в 19 стойку, высота 2U
  • Большой 12-символьный LCD дисплей
  • 32 канала памяти
  • Мульти тон CTCSS, DTCS и цифровые коды RAN
  • Нормальное и приоритетное сканирование
  • Выходная мощность 50Вт при 50% нагрузке, 25Вт при 100% нагрузке
  • Два модуля в одном корпусе (второй модуль устанавливается дополнительно UR-FR5000/UR-FR6000)
  • 5-Tone и DTMF кодер/декодер (для аналога FM)
  • Аксуссуарный разъем (D-sub 25 pin) для подключения аналоговых транковых контролеров или других дополнительных устройств
  • Встроенный инверсионный голосовой скремблер, а также возможна установка дополнительных UT-109R/UT-110R (для аналога FM)
  • Передача CW ID

 

Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru