Цены и наличие товара Вы можете уточнить здесь

Icom IC-A14/S, IC-A15/S>>
Icom IC-A23 >>
Icom IC-A4 >>
Icom IC-A6/IC-A24 >>
Vertex VXA-100 >>
Vertex VXA-120 >>
Vertex VXA-200 >>
Vertex VXA-210 >>

Icom IC-A14/S, IC-A15/S

 

Портативная авиационная радиостанция ICOM IC-A14/S, IC-A15/S

Станциями IC-A14/S, IC-A15/S фирма ICOM начала новую линейку авиационных радиостанций. Радиостанции отличает исключительная надежность при самых тяжелых условиях эксплуатации. Эти радиостанции способны работать при пониженном атмосферном давлении, высокой или низкой температуре, им не страшны удары и вибрация. Радиостанции очень просты в использовании, что очень важно при их применении профессионалами, при этом за внешней простотой скрывается возможность использования широкого набора специальных функций.

Технические характеристики IC-А23
Диапазон частот, МГц Tx/Rx: 118.000...136.975 Rx: 108.000...117.975161.650...163.275
Модуляция Tx/Rx : AM; Rx : FM
Пиковая мощность передатчика, Вт 5.0
Количество каналов / банков памяти 200 / 10
Шаг сетки частот, кГц 25.0
Диапазон рабочих температур -10...+60 °С
Габариты и вес 58х107.5х28.5 мм,340 г
Чувствительность (6 дБ SINAD), мкВ 1.0
вверх Сравнение радиостанций >>

Icom IC-A4

Портативная авиационная радиостанция ICOM IC-A4
      Cертифицирована в Госстандарте Украины Радиостанция предназначена для связи наземных технических служб аэропорта с экипажами летательных средств, выполняющими наземное маневрирование, а также для связи десантных групп пожарных с лесопатрульной и пожарной авиацией при тушении лесных пожаров. Использование самой современной технологии позволило фирме ICOM уменьшить габариты авиационных станций при сохранении великолепного качества звука. Прочная, надежная конструкция. Корпус из ударопрочного пластика, литой алюминиевый каркас, крепление аккумулятора сзади, гибкая антенна. Соответствует военному стандарту MIL STD 810. Унифицированный корпус. Конструкция A4 идентична популярной радиостанции F3/F4, что позволяет использовать весь ассортимент аксессуаров - чехлы, зарядники и аккумуляторы. Подсвечиваемый знакосимвольный дисплей на 5 знаков позволяет отображать частоты, наименования каналов, функций и аэропортов, что предоставляет дополнительные удобства. Минимальное количество кнопок ( 7 ) облегчает управление. 19 каналов памяти. Аккумулятор большой емкости (1050 мАч в стандартной комплектации). Станция может программироваться с компьютера, возможно также клонирование установок станции. На выбранных каналах может быть запрещена передача (программируется дилером). Функция SIDETONE позволяет с помощью стандартной гарнитуры или наушника прослушивать передаваемый сигнал, дополнительный адаптер OPC-752 позволяет использовать авиационные гарнитуры. Проспект на английском языке

 

      (50,5 Кб) Icom IC-A4
Технические характеристики IC-А4
Диапазон частот, МГц передача: 118.000...136.975прием: 108.000...136.975
Пиковая мощность передатчика, Вт 3.7
Количество каналов 19
Диапазон рабочих температур -10...+50 .С
Шаг сетки частот, кГц 25.0
Габариты и вес 58х140.5х32.3 мм, 425 г
Чувствительность (6 дБ SINAD), мкВ 1.0
вверх Сравнение радиостанций >>

Icom IC-A6/IC-A24

Характеристики
  • Нова функція "Виклик з пам'яті" запам'ятовує 8-10 частот на відправлення, проміжне з'єднання і прибуття прийняті в аеропорті
  • Виділена кнопка екстреного виклику, запрограмована на частоту домашнього сигналу 121,5 МГц
  • Великий зручний рідкокристалічний дисплей з 14- сегментними знаками. Максимальна кількість програмувальних знаків - 6
  • Зовнішнє рознімання живлення дозволяє одночасно користуватися і заряджати станцію
  • Новий компактний дизайн бризкозахищеного корпуса
  • Великий динамік для роботи в умовах підвищеного шуму і великі кнопки на клавіатурі
  • Акумуляторний корпус для резервного джерела живлення 200 каналів пам'яті і банки пам'яті (максимально 20 каналів х 10 банків)
  • Акумулятори пройшли польові іспити як аксесуари до станцій ІС-F11/F3G
  • Велика вихідна потужність - 5Вт
  • Опціонапьний обертовий поясний кліп
  • Поліпшені акумулятори
  • Укріплено базову частину поясного кліпу.Стандартні аксесуари ВС-110 : настінний зарядний пристрій ВР-210N : Мі-МН акумулятор (7.200мА/1650мАч) ВР-208N : Акумуляторний корпус АА(В6) х 6 Кабель адаптера: ОРС-499 Чохол для перенесення: LС-159(новинка) АнтенаОпції Нові: АD-108 чашка для зарядного пристрою ВС-119N/121N СS-А24 кпонуюче програмне забезпечення LС-159 чохолЗвичайні: ВС-110 настінний зарядний пристрій ВС-119N швидкий зарядний пристрій ВС-121N швидкий зарядний пристрій ВС-124 адаптер перемінного струму для використання з ВС-121N ВР-208N акумуляторний корпус (АА(R6) х 6) ВР-209N Ni-Cd акумулятор (7.2V/1 1100мАч) ВР-210N Nі-МН акумулятор (7.2V/1650мАч) ВР-211N літієвий акумулятор (7.4В/1800мАч)* СР-12L кабель для роботи від прикурювача СТ-17 СІ-V конвертер МВ-96 шкіряний ремінець для носіння станції на поясі (обертовий ) МВ-96F шкіряний ремінець для носіння станції на поясі (стаціонарний ) ОРС-245L кабель постійного струму ОРС-478/U кабель для клонування (RS-232С/USB) ОРС-499 кабель-адаптер для навушників ОРС-656 кабель постійного струму ВС-121N
Технические характеристики IC-A6 / IC-A24
Диапазон частот, МГц Tx/Rx: 118.000...136.975 Rx: 108.000...117.975161.650...163.275
Модуляция Tx/Rx : AM; Rx : FM
Пиковая мощность передатчика, Вт 5.0
Мощность несущей передатчика, Вт 1.5
Количество каналов / банков памяти 200 / 10
Шаг сетки частот, кГц 25.0
Диапазон рабочих температур -10...+60 °С
Габариты и вес 58х107.5х28.5 мм, 340 г
Чувствительность AM (6 дБ S/N), мкВ 0.5
вверх Сравнение радиостанций >>

Vertex VXA-100

      Данная модель предназначена для профессионального использования в авиационном диапазоне с амплитудной модуляцией. Конструкция станции соответствует MIL-STD 810, шасси станции - металлическое, аккумулятор пристегивается сзади. Станция выпускается в двух модификациях - AVIATOR PILOT (старшая модель с полной клавиатурой) и AVIATOR PRO (модель с упрощенной клавиатурой). Обе модели имеют 50 каналов памяти, в которые могут быть записаны наиболее часто используемые частоты авиационного диапазона. Выходная мощность станции составляет 1.5 В в режиме несущей АМ, то 5 Вт p.e.p. Контроллер дисплея позволяет отображать на нем либо текущую рабочую частоту, либо номер канала, либо цифро-буквенное название канала, что делает станцию очень удобной и практически универсальной. Старшая модель AVIATOR PILOT оснащена кроме того навигационными функциями - системой DVOR с индикацией FROM и TO, отображением девиации курса CDI и определением центра ABCS. В обеих версиях станции индицируется состояние разряда батареи, для более продолжительного времени работы используется режим экономии батарей. Программирование радиостанции осуществляется при помощи удобного встроенного меню.
Технические характеристики VXA-100
Количество каналов 300
Диапазон рабочих частот TX: 118-137 МГц, RX: 108-137 МГц
Рабочая ширина радиоканала 25 кГц
Напряжение питания 6-15 В
Диапазон рабочих температур -10°C...+60°C
Габариты 57x99x39 мм
Вес 365 г
Потребляемый ток
Прием 175 мА
Дежурный режим 53 мА
Передача 840 мА
Приемник
Способ образования частот Супергетеродин с двойным преобразованием
Чувствительность приемного тракта (6 дБ SINAD) 1 мкВ
Избирательность (-6/-60 дБ) 8 кГц/25 кГц
Выходная мощность громкоговорителя 0,5 Вт при нагрузке 8 Ом, нелинейные искажения <10%
Передатчик
Выходная мощность 1,5 Вт
Побочные излучения >60 дБ
вверх Сравнение радиостанций >>

Vertex VXA-120

      Данная модель называется также AVIATOR PRO II и является продолжением тенденций своей предшественницы. VXA-120 имеет 50 частотных каналов в которые могут быть запрограммированы наиболее часто используемые частоты авиационного диапазона. Дисплей станции - цифро-буквенный, позволяет отображать либо рабочую частоту, либо номер канала, либо буквенное название канала. Есть специальный переключатель инверсии дисплея, когда все надписи переворачиваются. Станция используется с аккумулятором FNB-64. Для его заряда могут быть применены быстрые зарядники NC-73 и VAC-400, либо медленный NC-76C. Возможно подключение внешнего источника питания с использованием корда E-DC-5B. Возможна активация режима экономии батарей. Поддерживается прием погодных каналов. Программирование станции осуществляется при помощи удобного встроенного меню.
Технические характеристики VXA-120

Диапазон частот, МГц:

ПРМ - 108-117,975 ПРД - 118-136,975

Количество каналов: 300
Диапазон рабочих температур,°С от -10°С до + 60°С
Стабильность частоты, ppm ?5
Вид излучения RX - AM&FM, TX - AM
Напряжение питания, В 6-15
Габариты, мм 108,5 х 58 х 26,5
Вес, г 335 с FNB-64

Приемник

Чувствительность, мкв < 1,0
Избирательность по соседнему каналу, дБ 60
Избирательность по побочным каналам, дБ 60
Интермодуляционная избирательность, дБ 65
Выходная мощность ЗЧ, Вт 0,5
Передатчик
Выходная мощность, Вт. 4,0 / 3,5
Максимальная девиация, кГц -
Подавление паразитной частотной модуляции, дБ >60
Соответствие стандарту MIL STND 810 C/D/E
Гарантия: 1,5 года
вверх Сравнение радиостанций >>

Vertex VXA-200

      Функций DVOR с индикацией «ОТКУДА» и «КУДА» Функция автоматического указания курса - ABCS Индикация отклонения от курса 150 каналов памяти (50 программируемых и 100 записанных авиационных радиочастот) Соответствует требованиям международного военного стандарта MIL-STD 810 Возможность «прямого» ввода частоты с клавиатуры Встроенная функция измерения температуры (возможность индикации температуры при выключенной радиостанции) Встроенная функция измерения атмосферного давления и высоты над уровнем моря (при установке модуля SU-1) Возможность управления шумоподавителем с клавиатуры 8-символьный алфавитно-цифровой дисплей с подсветкой Индикация информации о рабочем канале в виде частоты, номера или имени Клавиатура с подсветкой Автоматический ограничитель шумов Функция «двойного просмотра» каналов Быстрое переключение на аварийный канал (121.5 МГц) Режим сохранения батарей Индикатор разряда батарей Водозащитное исполнение класса JIS-4 Возможность подключения внешнего питания Программирование с ПК
Модель
VXA-200
Частотный диапазон
Tx: 118.000-136.975 МГц (COM Band) Rx: 108.000-117.975 МГц (NAV Band), 118.000-136.975 МГц (COM Band)
Количество каналов
150 (50 программируемых и 100 записанных)
Шаг сетки частот
25 кГц

Тип модуляции прием передача

AM, FM AM
Напряжение питания
6.0 – 15.0 В
Потребляемый ток ожидание(шумоподавитель вкл.) прием передача (1.5 Вт)
65 мА 190 мA 1.0 A
Диапазон рабочих температур
-10...+60°C
Размеры
58 x 109 х 30 мм
Вес
345 г, с аккумулятором FNB-64
ПРИЕМНИК
Чувствительность (6 дБ SINAD)  
Избирательность  
Избирательность по соседнему каналу  
Выходная мощность аудио
0.4 Вт при Кг<10%
ПЕРЕДАТЧИК
Выходная мощность
5 (пиковая) / 1.5 Вт (по несущей)
Паразитное излучение
>60 дБ (ниже несущей)
вверх Сравнение радиостанций >>

Vertex VXA-210

      Новая ультракомпактная радиостанция авиационного диапазона, соответствующая требованиям военного стандарта качества. Металлическое шасси и заднее крепление батареи придают радиостанции высокую прочность, что позволяет эксплуатировать ее в условиях повышенных ударных нагрузок и вибрации. Водозащищенность радиостанции соответствует уровню JIS-4. Военный стандарт качества 150 каналов памяти Выходная мощность 5 Вт Прямой ввод частоты с клавиатуры Быстрый доступ к аварийной частоте (121.5 МГц) Автоматический ограничитель шума Встроенный датчик температуры Датчик барометрического давления/высоты (опция) Простое управление шумоподавителем Режим сохранения батареи Легко читаемая 16-кнопочная клавиатура с подсветкой 8-символьный легко читаемый под любым углом подсвечиваемый ЖК-дисплей Разъем для подключения авиационной гарнитуры Отображение на дисплее навигационных параметров Отображение информации каналов памяти в виде частоты, номера канала или алфавитно-цифровой метки Индикатор разряда батареи Возможность программирования с помощью компьютера
Технические характеристики VERTEX VXA-210
ОСНОВНЫЕ
Диапазоны частот TX 108-117,975 МГц 118-136,975 МГц RX 108-136,975 МГц
Разнос каналов 25 кГц
Режимы работы TX: AM; RX: AM/FM
Напряжение питания 6.0-15.0 В
Потребляемый ток 65 мА (squelched) 190 мА (Прием) 1 A @1.5 Вт
Температурный диапазон -10° C - +60° C
Размеры 58 x 109 x 30 мм
Вес 345 г
ПРИЕМНИК
Тип Супергетеродин с двойным преобразованием
Промежуточные частоты 35.4 МГц и 450 кГц
Чувствительность 0.8 мкВ (6 дБ S/N)
Селективность 8 кГц/-6 дБ
Избирательность по соседнему каналу 25 кГц/-60 дБ
Выходная мощность аудио 400 мВт на 8 Ом
ПЕРЕДАТЧИК
Выходная мощность 5.0 Вт / 1.5 Вт
Стабильность частоты +10 ppm (-10° C - +60° C)
Побочные излучения 60 дБ
Встроенный микрофон конденсаторный
Сопротивление микрофона 150 Ом
вверх Сравнение радиостанций >>
Как и куда распространяются радиоволны
Чем длиннее, тем дальше

Каждый раз, когда вы беретесь за ручку настройки радиоприемника и отправляетесь в путешествие по эфиру, перед вами открывается удивительный мир странствий, интересных и совсем не опасных приключений. Единственным их результатом будет расширение ваших знаний и кругозора.

Для обычного путешествия, как известно, нужны карта, компас (а лучше, спутниковый карманный приемник-навигатор - такие уже имеются), еще немного туристического снаряжения и элементарные знания и навыки. Для путешествия по эфиру, не выходя из дома, нужно все то же самое: снаряжение - радиоприемник, карта и "компас", справочник по радиостанциям мира и, конечно, знания и навыки. Как раз то, о чем мы сегодня собираемся поговорить.

Бесполезно искать ночью иголку в стоге сена, как бесполезно днем, находясь на территории России, искать в эфире американские радиостанции на средних волнах, хотя найти их можно ночью и днем. Итак, все наше многословие свелось к одному: вращая ручку настройки приемника, полезно хотя бы немного знать о распространении радиоволн на Земле.

Последней фразой я хотел подчеркнуть, что в Космосе все гораздо проще. Радиоволны, как и световые, и другие электромагнитные волны, распространяются прямолинейно. Они стараются это делать и на Земле, но она-то, как справедливо заметили еще средневековые ученые, круглая, и дальше горизонта на ней ничего не видно! Какой же смелостью надо было обладать Колумбу, а затем и Магеллану, чтобы экспериментально, собственным путешествием доказать сферичность Земли!

Трудно сравнивать, но изрядной смелостью обладал и Маркони, когда не прошло и десятилетия после первых успешных опытов Генриха Герца, Оливера Лоджа и Александра Попова по передаче и приему радиоволн, а он уже поставил целью послать радиосигналы через Атлантический океан. Были натянуты гигантские по тем временам проволочные антенны, построены мощные передатчики. И такая связь между побережьями Англии и Канады была впервые осуществлена в 1903 г. Успех был огромен, хотя всего-то и принято было достоверно три телеграфных тире.

В те годы уже было экспериментально, т. е. методом проб и ошибок, установлено, что чем длиннее волна, тем дальше она распространяется. Первую трансатлантическую связь провели на сверхдлинных волнах. Отсюда и применение гигантских антенн - ведь длина волны первых примитивных радиопередатчиков прямо зависела от длины антенны. Кроме того, чтобы антенна эффективно излучала, ее длина должна быть хотя бы порядка четверти длины волны. Тогда же необходимо было объяснить факт зависимости дальности распространения от длины волны явлением дифракции. Упрощенно говоря, дифракция - это огибание волной препятствия, а препятствием является высота шарового сегмента Земли, разделяющего приемную и передающую радиостанции (рис. 16). От Санкт-Петербурга до Москвы, как известно, около 600 км. Расчет дает высоту шарового сегмента h около семи километров, следовательно, длинные, километровые волны распространяются на такие расстояния.


У читателя может возникнуть вопрос: а как определить длину волны? Прежде ее обозначали в метрах прямо на шкале приемника, а теперь все чаще в килогерцах и мегагерцах (соответствующих длине волны), а уж современные цифровые шкалы и подавно измеряют только частоту. Длина волны l и частота колебаний f радиопередатчика обратно пропорциональны и связаны через скорость распространения радиоволн - c, такую же, как и скорость света: l= c/f. Практически, чтобы узнать длину волны в километрах, надо 300 разделить на частоту в килогерцах. Например, московская длинноволновая радиостанция на частоте 171 кГц (бывшая имени Коминтерна) имеет длину волны около 1,75 км. Ее можно слушать почти на всей территории европейской части России круглосуточно. Увлечение длинными волнами на заре радиотехники породило великую эпоху Радиостроя, когда антенны становились все выше, а радиостанции все мощнее. В 30-е годы радиостанция им. Коминтерна была самой мощной в Европе, излучая до 500 кВт, и ее слушали на детекторные приемники в самых глухих и отдаленных деревнях.

Радиостанций становилось все больше, и они стали создавать помехи друг другу. Здесь надо заметить, что при передаче радиовещательной программы станция занимает в эфире не одну частоту, а целую полосу частот шириной до 20 кГц. В справочниках указывают центральную частоту этой полосы, называемую несущей частотой, или просто несущей. Именно эту частоту и генерирует высокочастотный, или, как его называют, задающий генератор передатчика. Затем его колебания усиливаются и модулируются колебаниями звуковых частот.

В 30-е годы было достигнуто соглашение - установить разнос частот радиостанций в 9 кГц. Оно соблюдается и поныне. Теперь легко сосчитать, что на длинных волнах, в участке, отведенном для радиовещания (примерно от 150 до 400 кГц), можно разместить не более двух с половиной десятков радиостанций.

Со временем стали строить средневолновые радиостанции - в этом диапазоне около 120 частотных каналов, но и дальность распространения меньше, поскольку длина волны короче ( вспомните про дифракцию). Поэтому один и тот же частотный канал стали отводить нескольким, достаточно удаленным друг от друга радиостанциям. В дневное время они не создавали помех друг другу. Иное дело ночью, дальность распространения длинных и средних волн намного возрастала и становились слышны радиостанции, удаленные на несколько тысяч километров. Резко возрастали и взаимные помехи. Отчего это?

Ученые уже имели рабочую гипотезу. Высказал ее Оливер Хевисайд, чудаковатый английский джентльмен, чопорный и безукоризнено одетый, когда появлялся на людях. Но делать он этого не любил, а любил работать по ночам в жарко натопленной комнате и с наглухо занавешенными окнами. Говорят, что когда его избрали действительным членом Королевского Общества (по-нашему - Академии наук) и пригласили на торжественную церемонию избрания (черные мантии, головные уборы с четырехугольным верхом), он не нашел гинеи (а такой символический взнос надо было уплатить) и просто не пошел на заседание! К чести общества надо сказать, что оно все-таки избрало Хевисайда не действительным, но почетным членом, при этом не требовалось ни его присутствия, ни гинеи.

Так в чем же состояла гипотеза?

3.2. Жизнь преподносит сюрпризы!

Пока шла драка за распределение частот на длинных и средних волнах, короткими никто не интересовался, они считались просто непригодными для дальней радиосвязи и за ненадобностью были отданы... радиолюбителям. А такие уже были в начале двадцатых годов. Ведь и радиосвязь, и наблюдение за сигналами радиостанций - это очень интересно! И вот, от радиолюбителей стали поступать сенсационные сообщения: с помощью простейших передатчиков мощностью в несколько ватт и примитивных приемников устанавливались связи на десятки тысяч километров! Такой феномен уже нельзя объяснить дифракцией.

Тут-то и вспомнили гипотезу Хевисайда: верхние слои атмосферы должны быть ионизированы солнечным излучением. Ионизированный газ (ионосфера) содержит много свободных электронов и может проводить электрический ток, а значит, должен отражать радиоволны. Скорые на подъем американцы соорудили импульсный передатчик, и в 1924 г. инженеры Брейт и Тьюв получили отражение от ионосферы при вертикальном зондировании и измерили время запаздывания отраженного импульса, а по нему вычислили высоту отражающего слоя.

Ионосферу долгое время называли слоем Хевисайда. Позднее Эпплтон, анализируя отраженные сигналы, обнаружил, что отражающих слоев несколько. Ему же мы обязаны и названиями слоев. В своих расчетах он обозначил вектор напряженности электрического поля, как это обычно и делается, буквой Е. Когда же понадобилось обозначить поле другого отражения, он выбрал следующую букву алфавита - F. Убедившись, что отражения идут от разных слоев, он решил, что и названия им готовы - Е и F, при этом имея в виду, что в дальнейшем могут быть открыты и другие слои, для которых пригодятся и предыдущие, и последующие буквы алфавита. Это предвидение вполне оправдалось. Теперь известно, что в летний полдень можно наблюдать, по крайней мере, четыре четко различимых слоя. Самый нижний, слой D на высоте около 70 км, существует только днем. Слой E на высоте 90...120 км существует круглосуточно, лишь ночью в нем уменьшается электронная концентрация (Солнце-то, причина ионизации, не светит!) и увеличивается высота. То же, но в меньшей степени, происходит и со слоем F, но он расположен значительно выше - 200...250 км. Днем он распадается на два слоя - F1 и F2.

Информация взята из сайта http://www.chipinfo.ru