Цены и наличие товара Вы можете уточнить здесь

Icom IC-A210/210E >>
Icom IC-A110 >>
Icom IC-A200 >>

Icom IC-A210/210E

 

Радиостанция ICOM IC-A210

Компания Icom продолжает планомерную смену модельного ряда авиационных радиостанций. На смену проверенной временем модели IC-A200 с 2008 года компания выпустила новую радиостанцю IC-A210.

  • Большой светодиодный дисплей с высоким уровнем яркости.
    Радиостанция IC-A210 снабжена большим дисплеем на основе органических светодиодных индикаторов (OLED). Дисплей на основе OLED обладает существенными преимуществами по яркости, четкости, контрастности изображения, а также углу обзора и времени отклика. Кроме того, радиостанция имеет функцию автоматического затемнения, которая определяет оптимальный уровень яркости для дневного или ночного режимов.
  • Простота установки канала.
    Двухконтактная кнопка со стрелками легко осуществляет переключение между основным и резервным рабочим каналом. Функция двойного приема позволяет вести прием в двух каналах одновременно. Кроме того, функция автоматического стека позволяет хранить в памяти 10 последних использованных каналов и при необходимости мгновенно устанавливать их.
  • Функция GPS памяти
    При подключении внешнего GPS приемника, снабженного базой рабочих частот аэропортов, необходимая рабочая частота для связи с аэропортом может быть передана для настройки радиостанции IC-A210.
  • Источник питания 12V/24V DC
    Встроенный DC преобразователь напряжений позволяет использовать различные источники питания от 11.5 до 27.5 Вольт.
  • Функции селекторной связи
    Радиостанция IC-A210 снабжена функцией селекторной связи с голосовой активацией. Таким образом, у командира корабля имеется возможность разговора со вторым пилотом через гарнитуру (поставляется отдельно).
  • Простота установки
    Радиостанция IC-A210 может быть установлена в кабине пилота с помощью стандартных монтажных скоб, которые использовались с радиостанциями серии IC-A200. В комплекте с радиостанцией поставляются два типа адаптеров задней панели для упрощенного подключения.
  • Совместима по аксессуарам с IC-A200
    Дополнительный комплект MB-53 - для установки радиостанции в автомобиле, включает в себя громкоговоритель и микрофон
    Дополнительный комплект PS-80 для стационарной установки радиостанции. PS-80 включает в себя блок питания с посадочным местом под радиостанцию, громкоговоритель и микрофон.
  • Разработана и собрана в Японии.
  • Прочие функции и особенности:
    10 обычных каналов памяти с наименованием длиной до 6 символов.
    200 сгруппированных каналов памяти (6 банков по 20 каналов) с наименованиями.
    Прием сообщений метеослужбы NOAA.
    Установка аварийной частоты 121.5 мГц нажатием единственной кнопки.
    Функция самоконтроля излучаемого сигнала в головных телефонах.
    Функция ANL (автоматического ограничения шумов) для подавления помех импульсного типа.
    Возможность дистанционного управления.
    Сканирование VFO.
    Блокировка ручки настройки и органов управления передней панели Функция проверки шумоподавления.
    Программирование настроек с персонального компьютера.
  • 3 шага перестройки частоты. Радиостанция имеет две концентрические ручки настройки. Малая (внутренняя) ручка обеспечивает настройку с шагом 50кГц, выдвижением ручки выбирается шаг 25кГц. Большая (внешняя) ручка обеспечивает настройку с шагом 1мгц.
  • Дистанционное управление. Основные операции (переключатель эфир/интерком, выбор канала памяти, обмен частот и т.д.) могут осуществляться с помощью вынесенных переключателей.
  • Функция интеркома. При наличии на борту проводки радиостанция обеспечивает внутреннюю связь между членами экипажа.

    Технические характеристики IC-А210
    Диапазон частот, МГц 118.000...136.975
    Пиковая мощность передатчика, Вт 8 (Carrier power)
    Количество каналов 240
    Диапазон рабочих температур -20...+55 .С
    Шаг сетки частот, кГц 25.0
    Габариты и вес 160х34х271 мм,
    1000 г
    Чувствительность (6 дБ SINAD), мкВ 2.0

    вверх Сравнение радиостанций >>

    Icom IC-A110


    Радиостанция ICOM IC-A110
    Надежная конструкция. Радиостанция выполнена в унифицированном (для профессиональных мобильных радиостанций ICOM) литом алюминиевом корпусе, служащим одновременно радиатором, и позволившему повысить номинальную пиковую мощность передатчика до 36 Вт.

    Удобство и доступность в эксплуатации. В 20 ячейках памяти каналов стало возможным хранить русскоязычные (до 7 символов) наименования. Управление радиостанцией максимально упрощено (7 стандартных кнопок управления и удобный регулятор пошаговой настройки частоты).

    Новые возможности. ICOM IC-A110 перекрывает весь авиационный диапазон 118...137 МГц, что при шаге 8.33 кГц позволяет вести работу в любом из 2280 каналов связи. Радиостанция имеет встроенный конвертор напряжения 27.5 / 13.8 В, позволяющий подключение практически ко всем стандартным бортовым сетям.

    Проспект на английском языке PDF (257Кб) Icom IC-A110

    Технические характеристики IC-А110
    Диапазон частот, МГц 118.000...136.975
    Пиковая мощность передатчика, Вт 36
    Количество каналов 20
    Диапазон рабочих температур -30...+60 .С
    Шаг сетки частот, кГц 25.0 или 8.33
    Габариты и вес 150х50х180 мм,
    1500 г
    Чувствительность (6 дБ SINAD), мкВ 1.0

    вверх Сравнение радиостанций >>


    Icom IC-A200


    Радиостанция ICOM IC-A200
    Cертифицирована в Госстандарте Украины.
    Простота в эксплуатации. Минимальное количество переключателей и кнопок, автоматический шумоподавитель уменьшают возможность ошибок в управлении радиостанцией даже в экстренных ситуациях.

    Надежная конструкция. Прочный алюминиевый каркас и передняя панель из ударопрочного пластика выдерживают все механические и климатические воздействия в условиях полета.

    Стабильная работа при выходной мощности до 25Вт. Цельный алюминиевый корпус, служащий радиатором, не позволяет радиостанции перегреваться даже при длительных периодах передачи.

    Подсвечиваемые передняя панель и функциональный дисплей. Вся информация о каналах и режимах работы отображается на большом ЖК-дисплее. Постоянно выводятся частоты рабочего (USE) и дежурного (STBY) канала связи. Подсветка дисплея и ручек управления изменяется вместе с приборной панелью пилота.

    Полный частотный диапазон. ICOM IC-A200 перекрывает весь авиационный диапазон 118...137МГц, что при шаге 25кГц соответствует 760 каналам связи.

    Функция защиты памяти. Содержимое выбранных каналов памяти может быть защищено от изменений (программируется Дилером).

    9 каналов памяти.

    2 способа установки частоты:

    - прямой выбор частоты в окне USE;
    - выбор частоты в окне STBY и обмен с окном USE нажатием кнопки .

    Комплект PS-80 для стационарной установки радиостанции Icom IC-A200
    3 шага перестройки частоты. Радиостанция имеет две концентрические ручки настройки. Малая (внутренняя) ручка обеспечивает настройку с шагом 50кГц, выдвижением ручки выбирается шаг 25кГц. Большая (внешняя) ручка обеспечивает настройку с шагом 1мгц.

    Дистанционное управление. Основные операции (переключатель эфир/интерком, выбор канала памяти, обмен частот и т.д.) могут осуществляться с помощью вынесенных переключателей.

    Функция интеркома. При наличии на борту проводки радиостанция обеспечивает внутреннюю связь между членами экипажа.

    MB-53 - комплект для установки радиостанции в автомобиле, включает в себя громкоговоритель и микрофон

    Предусмотрен комплект для стационарной установки радиостанции. PS-80 включает в себя блок питания с посадочным местом под радиостанцию, громкоговоритель и микрофон.

    Технические характеристики IC-А200
    Диапазон частот, МГц 118.000...136.975
    Пиковая мощность передатчика, Вт 25
    Количество каналов 9
    Диапазон рабочих температур -20...+55 .С
    Шаг сетки частот, кГц 25.0
    Габариты и вес 160х34х271 мм,
    1100 г
    Чувствительность (6 дБ SINAD), мкВ 2.0

    вверх Сравнение радиостанций >>
Защита информации, Теория связи в секретных системах

Вопросы криптографии и секретных систем открывают возможность для интересных применений теории связи. В настоящей статье развивается теория секретных систем. Изложение ведется в теоретическом плане и имеет своей целью дополнить положения, приводимые в обычных работах по криптографии. В этих работах детально изучаются многие стандартные типы кодов и шифров, а также способы их расшифровки. Мы будем иметь дело с общей математической структурой и свойствами секретных систем.
Наше изложение будет ограничено в нескольких отношениях. Во-первых, имеются три общих типа секретных систем:
1) системы маскировки, которые включают применение таких методов, как невидимые чернила, представление сообщения в форме безобидного текста или маскировки криптограммы, и другие методы, при помощи которых факт наличия сообщения скрывается от противника;
2) тайные системы (например, инвертирование речи), в которых для раскрытия сообщения требуется специальное оборудование;
3) "собственно" секретные системы, где смысл сообщения скрывается при помощи шифра, кода и т.д., но само существование сообщения не скрывается и предполагается, что противник обладает любым специальным оборудованием, необходимым для перехвата и записи переданных сигналов. Здесь будет рассмотрен только третий тип систем, так как системы маскировки представляют в основном психологическую проблему, а тайные системы - техническую проблему.
Во-вторых, наше изложение будет ограничено случаем дискретной информации, где сообщение, которое должно быть зашифровано, состоит из последовательных дискретных символов, каждый из которых выбран из некоторого конечного множества. Эти символы могут быть буквами или словами некоторого языка, амплитудными уровнями "квантованной" речи или видеосигнала и т.д., но главный акцент будет сделан на случае букв.
Статья делится на три части. Резюмируем теперь кратко основные результаты исследования. В первой части излагается основная математическая структура секретных систем. В теории связи считается, что язык может рассматриваться как некоторый вероятностный процесс, который создает дискретную последовательность символов в соответствии с некоторой системой вероятностей.
С каждым языком связан некоторый параметр D, который можно назвать избыточностью этого языка. Избыточность измеряет в некотором смысле, насколько может быть уменьшена длина некоторого текста в данном языке без потери какой-либо части информации. Простой пример: так как в словах английского языка за буквой q всегда следует только буква u, то u может быть без ущерба опущена. Значительные сокращения в английском языке можно осуществить, используя его статистическую структуру, частую повторяемость определенных букв или слов, и т.д. Избыточность играет центральную роль в изучении секретных систем.
Секретная система определяется абстрактно как некоторое множество отображений одного пространства (множества возможных сообщений) в другое ространство (множество возможных криптограмм). Каждое конкретное отображение из этого множества соответствует способу шифрования при помощи конкретного ключа.
Предполагается, что отображения являются взаимнооднозначными, так что если известен ключ, то в результате процесса расшифрования возможен лишь единственный ответ.
Предполагается далее, что каждому ключу (и, следовательно, каждому отображению) соответствует некоторая априорная вероятность - вероятность выбрать этот ключ. Аналогично каждому возможному сообщению соответствует априорная вероятность, определяемая задающим сообщение вероятностным процессом. Эти вероятности различных ключей и сообщений являются фактически априорными вероятностями для шифровальщика противника и характеризуют его априорные знания относительно интересующей его проблемы.
Чтобы использовать такую секретную систему, сначала выбирается некоторый ключ и посылается в точку приема. Выбор ключа определяет конкретное отображение из множества отображений, образующих систему. Затем выбирается сообщение и с помощью отображения, соответствующего выбранному ключу, из этого сообщения формируется криптограмма. Эта криптограмма передается в точку приема по некоторому каналу и может быть перехвачена противником. На приемном конце с помощью отображения, обратного выбранному, из криптограммы восстанавливают первоначальное сообщение.
Если противник перехватит криптограмму, он может с ее помощью сосчитать апостериорные вероятности различных возможных сообщений и ключей, которые могли быть использованы для составления такой криптограммы. Это множество апостериорных вероятностей образует его сведения о ключах и сообщениях после перехвата. "Сведения", таким образом, представляют собой некоторое множество предположений, которым приписаны вероятности. Вычисление апостериорных вероятностей является общей задачей дешифрования.
Проиллюстрируем эти понятия простым примером. В шифре простой подстановки со случайным ключом имеется 26! отображений, соответствующих 26! способам, которыми мы можем заменить 26 различных букв. Все эти способы равновозможны, и поэтому каждый имеет априорную вероятность 1/26! Если такой шифр применяется к "нормативному английскому языку" и предполагается, что шифровальщик противника не знает ничего об источнике сообщений, кроме того, что он создает английский текст, то априорными вероятностями различных сообщений из N букв являются просто их относительные частоты в нормативном английском тексте.
Если противник перехватил такую криптограмму из N букв, его апостериорные вероятности изменятся. Если N достаточно велико (скажем, 50 букв), имеется обычно единственное сообщение с апостериорной вероятностью, близкой к единице, в то время как все другие сообщения имею суммарную вероятность, близкую к нулю. Таким образом, имеется, по существу, единственное "решение" такой криптограммы. Для меньших N (скажем, N = 15) обычно найдется много сообщений и ключей, вероятности которых сравнимы, и не найдется ни одного сообщения и ключа с вероятностью, близкой к единице. В этом случае "решение" криптограммы неоднозначно.
В результате рассмотрения секретных систем, которые могут быть представлены как совокупность отображений одного множества элементов в другое, возникают две естественные операции комбинирования, производящие из двух данных систем третью. Первая операция комбинирования называется операцией "умножения" (произведением) и соответствует зашифрованию сообщения с помощью системы R с последующим зашифрованием полученной криптограммы с помощью системы S, причем ключи R и S выбираются независимо. Полный результат этой операции представляет собой секретную систему, отображения которой состоят из всех произведений (в обычном смысле R на отображения из S. Вероятности результирующих отображений являются произведениями вероятностей двух исходных отображений.
Вторая операция комбинирования является "взвешенным сложением":

T = pR + qS, p + q = 1.

Она представляет собой следующее. Сначала делается предварительный выбор, какая из систем R или S будет использоваться, причем система R выбирается с вероятностью p, а система S с вероятностью q. После этого выбранная система используется описанным выше способом.
Будет показано, что секретные системы с этими двумя операциями комбинирования образуют, по существу, "линейную ассоциативную алгебру" с единицей, - алгебраический объект) подробно изученный математиками.
Среди многих возможных секретных систем имеется один тип с многочисленными особыми свойствами. Этот тип назовем "чистой" системой. Система является чистой, если все ключи равновероятны и если для любых трех отображений Ti, Tj, Tk из множества отображений данной системы произведение

TiTj-1Tk

также является отображением из этого множества. То есть зашифрование, расшифрование и снова зашифрование с любыми тремя ключами должно быть эквивалентно одному зашифрованию с некоторым ключом.
Можно показать, что для чистого шифра все ключи по существу эквивалентны - все они приводят к тому же самому множеству апостериорных вероятностей. Больше того, каждой криптограмме соответствует некоторое множество сообщений ("остаточный класс"), из которых могла бы получиться эта криптограмма, а апостериорные вероятности сообщений в этом классе пропорциональны априорным вероятностям. Вся информация, которую противник получил бы в результате перехвата криптограммы, заключается в установлении остаточного класса. Многие из обычных шифров являются чистыми системами, в том числе простая подстановка со случайным ключом. В этом случае остаточный класс состоит из всех сообщений с таким же набором буквенных повторений, как в перехваченной криптограмме.
По определению, две системы R и S являются "подобными", если существует фиксированное отображение A (имеющее обратное A-1) такое, что

R = AS.

Если R и S подобны, то между получающимися в результате применения этих систем множествами криптограмм можно установить взаимнооднозначное соответствие, приводящее к тем же самым апостериорным вероятностям. Такие две системы аналитически записываются одинаково.
Во второй части статьи рассматривается проблема "теоретической секретности". Насколько легко некоторая система поддается раскрытию при условии, что для анализа перехваченной криптограммы противник располагает неограниченным количеством времени и специалистов? Эта проблема тесно связана с вопросами связи при наличии шумов, и понятия энтропии и неопределенности, введенные в теории связи, находят прямое применение в этом разделе криптографии.
"Совершенная секретность" определяется следующими требованиями к системе. Требуется, чтобы апостериорные вероятности различных сообщений, полученные после перехвата противником данной криптограммы, были бы в точности равны априорным вероятностям тех же сообщений до перехвата. Покажем, что "совершенная секретность" возможна, но требует в случае конечного числа сообщений того же самого числа возможных ключей. Если считать, что сообщение создается с данной "скоростью" R (понятие скорости будет определено позже), то ключ должен создаваться с той же самой или с большей скоростью.
Если используется секретная система с конечным ключом и перехвачены N букв криптограммы, то для противника будет существовать определенное множество сообщений с определенными вероятностями, которые могли бы создать эту криптограмму. С увеличением N это множество обычно сужается до тех пор, пока в конце концов не получится единственного "решения" криптограммы: одно сообщение с вероятностью, близкой к единице, а все остальные с вероятностями, практически равными нулю. В работе определяется величина H(N), названная ненадежностью.
Эта величина измеряет (в статистическом смысле), насколько близка средняя криптограмма из N букв к единственному решению, т.е. насколько неточно известно противнику истинное сообщение после перехвата криптограммы из N букв. Далее выводятся различные свойства ненадежности, например: ненадежность ключа не возрастает с ростом N. Эта ненадежность является теоретическим показателем секретности - теоретическим, поскольку она позволяет противнику дешифрировать криптограмму лишь в том случае, если он обладает неограниченным запасом времени.
В этой же части определяется функция H(N) для некоторых идеализированных типов шифров, называемых случайными шифрами. С некоторыми видоизменениями эта функция может быть применена ко многим случаям, представляющим практический интерес. Это дает способ приближенного вычисления количества материала, который требуется перехватить чтобы получить решение секретной системы.
Из подобного анализа следует, что для обычных языков и обычных типов шифров (но не кодов) это "расстояние единственности" равно приблизительно H(K)/D. Здесь H(K) - число, измеряющее "объем" пространства ключей. Если все ключи априори равновероятны, то H(K) равно логарифму числа возможных ключей. Вводимое число D - это избыточность языка. Оно измеряет количество "статистических ограничений", налагаемых языком. Для простой подстановки со случайным ключом наше H(K) равно log1026! или приблизительно 20, а D (в десятичных единицах на букву) для английского языка равно приблизительно 0.7. Таким образом, единственность решения достигается приблизительно при 30 буквах.
Для некоторых "языков" можно построить такие секретные системы с конечным ключом, в которых неопределенность не стремится к нулю при N. В этом случае противник не получит единственного решения такого шифра, сколько бы материала он не перехватил, и у него будет оставаться много альтернатив с довольно большими вероятностями. Такие системы назовем идеальными системами. В любом языке можно аппроксимировать такую ситуацию, т.е. отсрочить приближение H(N) к нулю до сколь угодно больших N. Однако такие системы имеют много недостатков, таких как сложность и чувствительность к ошибкам при передаче криптограммы.
Третья часть статьи посвящена "практической секретности". Две системы с одинаковым объемом ключа могут быть обе разрешимы единственным образом, когда перехвачено N букв, но они могут значительно отличаться по количеству времени и усилий, затрачиваемых для получения решения. На основе анализа основных недостатков секретных систем предлагаются методы построения систем, для решения которых требуются большие затраты времени и сил. Наконец, рассматривается проблема несовместимости различных желательных качеств секретных систем.

Информация взята из сайта http://www.lr.kiev.ua