Цены и наличие товара Вы можете уточнить здесь

Код Модель Тип радиостанции Количество Цена
90312/145 IC-A110 К-т р/ст авиац.108-136.975mhz 10 Позвоните, чтобы уточнить цену
90312/16 IC-F1020 К-т р/ст моб без микроф.146-174, 25Вт 4 Позвоните, чтобы уточнить цену
90312/86 IC-F1020 К-т р/ст моб.без HM-100 и OP,148-174, 45Вт 10 Позвоните, чтобы уточнить цену
90312/78 IC-F110 К-т р/ст моб146-174 с HM-100,25Вт, 128кан. 47 Позвоните, чтобы уточнить цену
90312/68 IC-F110S К-т р/ст моб 146-174 HM-100,25Вт, 8кан. 82 Позвоните, чтобы уточнить цену
90312/106 IC-F111 К-т р/ст моб 146-174 МГц 1, 50Вт, 128кан 6 Позвоните, чтобы уточнить цену
90312/122 IC-F1721D К-т р/ст моб.APCO25,136-174, цифровая 1 Позвоните, чтобы уточнить цену
90312/84 IC-F2020 К-т р/ст мобильной, 430-470, 35Вт 1 Позвоните, чтобы уточнить цену
90312/124 IC-F210 К-т р/ст моб 440-490 c HM-152, 25Вт, 128кан. 30 Позвоните, чтобы уточнить цену
90312/143 IC-F210 К-т р/ст моб 440-490 с HM-152, 25Вт, 128кан. 28 Позвоните, чтобы уточнить цену
90312/93 IC-F210 К-т р/ст моб 400-430 с HM-100, 25Вт, 128кан 16 Позвоните, чтобы уточнить цену
90312/142 IC-F210S К-т р/ст моб 440-490 с HM-15, 25Вт, 8кан. 38 Позвоните, чтобы уточнить цену
90312/74 IC-F210S К-т р/ст моб 440-490, 25Вт, 8кан. 3 Позвоните, чтобы уточнить цену
90312/105 IC-F210S К-т р/ст моб 400-430,25Вт, 8кан. 65 Позвоните, чтобы уточнить цену
90312/110 IC-F211 К-т р/ст 440-470, 50Вт, 128кан. 6 Позвоните, чтобы уточнить цену
90312/90 IC-F211S К-т р/ст моб 440-490, 50Вт, 8кан. 3 Позвоните, чтобы уточнить цену
90312/120 IC-F2500 К-т р/ст без OPC-345,430-470, МРТ1327 9 Позвоните, чтобы уточнить цену
90312/33 IC-F2500 К-т р/ст без микрофона,400-440, МРТ1327 5 Позвоните, чтобы уточнить цену
90312/15 IC-F320 К-т р/ст моб.с HM-100 146-174,45Вт 11 Позвоните, чтобы уточнить цену
90312/103 IC-F320 К-т р/ст моб.без микр.146-174,для ПДУ 1 Позвоните, чтобы уточнить цену
90312/51 IC-F410S К-т р/ст моб без микр.400-430, 25Вт, 8кан. 1 Позвоните, чтобы уточнить цену
90312/18 IC-F420 К-т р/ст моб.без микр.400-430,45Вт 1 Позвоните, чтобы уточнить цену
90312/66 IC-F510 К-т р/ст моб 146-174 без микр, 25Вт, 256кан. 12 Позвоните, чтобы уточнить цену
90312/102 IC-F510 К-т р/ст мобильной 146-174МГ,25Вт 2 Позвоните, чтобы уточнить цену
90312/99 IC-F521 К-т р/ст моб без микр.136-174, 50Вт 5 Позвоните, чтобы уточнить цену
90312/71 IC-F610 К-т р/ст мобильной 400-430 MH, МРТ1327 5 Позвоните, чтобы уточнить цену
90312/98 IC-F610 К-т р/ст моб без микр.400-430, МРТ1327 1 Позвоните, чтобы уточнить цену
90312/58 IC-F610 К-т р/ст моб 440-490 без микр, 25Вт, 256кан. 2 Позвоните, чтобы уточнить цену
90312/104 IC-M302 К-т р/с 156-163 моб.моркая черная 2 Позвоните, чтобы уточнить цену
90312/129 IC-M302 К-т р/ст морской мобильной 3 Позвоните, чтобы уточнить цену
90312/130 IC-M402A К-т р/ст мобильной black,морская 1 Позвоните, чтобы уточнить цену
90312/132 IC-M402A К-т Р/ст моб White,морская 1 Позвоните, чтобы уточнить цену
90312/121 IC-M421 К-т р/ст морск.моб.   Позвоните, чтобы уточнить цену
90312/118 IC-M602 К-т р/ст морск.бортовой(черная) 2 Позвоните, чтобы уточнить цену
90312/82 IC-M602 К-т р/ст морск.бортовой(белая) 1 Позвоните, чтобы уточнить цену
90312/115 TK-815E2 К-т р/ст мобильной,400-430, МРТ1327 1 Позвоните, чтобы уточнить цену
90312/39 TK-815T К-т р/ст мобильной,450-470, МРТ1327 13 Позвоните, чтобы уточнить цену
90312/28 TK-860GM К-т р/ст моб 450-470mhz, 128кан. 1 Позвоните, чтобы уточнить цену
90312/47 TK-860HK К-т р/ст моб 400-430, 45Вт 7 Позвоните, чтобы уточнить цену
Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru