Цены и наличие товара Вы можете уточнить здесь

Код Модель Тип радиостанции Количество Цена
1801/4 AG-25 Герметичный антенный предусилитель 144-148 МГц, усиление 15 дБ (для установки на мачте)   Позвоните, чтобы уточнить цену
1801/3 AG-35 Герметичный антенный предусилитель 430-450 МГц, усиление 15 дБ (для установки на мачте)   Позвоните, чтобы уточнить цену
03046/1 CR-338 Высокостабильный генератор для IC-718   Позвоните, чтобы уточнить цену
1912/4 CT-17 Блок сопряжения радиостанции или приемника с компьютером   Позвоните, чтобы уточнить цену
03045/14 FL-100 9мГц CW узкополосный фильтр 500Гц, 6дБ   Позвоните, чтобы уточнить цену
03045/20 FL-101 9мГц CW узкополосный фильтр 250Гц, 6дБ   Позвоните, чтобы уточнить цену
03045/23 FL-132 10,8491 мГц узкополосный фильтр 500 Гц, 6дБ   Позвоните, чтобы уточнить цену
03045/245 FL-133 10,9491 мгц узкополосный фильтр 500 гц,   Позвоните, чтобы уточнить цену
03045/1 FL-223 9 мГц SSB узкополосный фильтр 1.9кГц, 6дБ   Позвоните, чтобы уточнить цену
03045/11 FL-52А 455кГц CW узкополосный фильтр 500Гц, 6дБ   Позвоните, чтобы уточнить цену
1903/271 FL-53А 455кГц CW узкополосный фильтр 250Гц, 6дБ   Позвоните, чтобы уточнить цену
03045/21 FL-96 455кГц SSB широкополосный фильтр 2.8кГц, 6дБ   Позвоните, чтобы уточнить цену
190313/89 IC-208 Tx: 144-148/430-440 мГц, Rx: 118-174/230-550/810-999 МГц, 55/50 Вт; 512 каналов, DTCS и CTCSS, съёмная панель управления, подключение модема на 9600 bps КОМПЛЕКТ: микрофон HM-133 ,    Позвоните, чтобы уточнить цену
190312/70 IC-2100H #03 144-148 мГц, (Rх: 118-174 МГц), 55 Вт, 100 + 13 каналов, 9600 bps, DTMF и CTCSS, дисплей с переключаемым цветом подсветки (жёлтый/зелёный) 1 Позвоните, чтобы уточнить цену
111111/1 IC-2720H 136-174/400-479 мГц, 50/35 Вт, 100 каналов, DTMF и CTCSS, междиапазонная дуплексная работа, съёмная панель управления К   Позвоните, чтобы уточнить цену
90314/14 IC-7000 EURO #02 Тх: 1,8 - 50 МГц (100 Вт) (кроме АМ);1,8 - 50 МГц (40 Вт) (АМ); 144-148 МГц (50 Вт) (кроме АМ); 430 МГц (35 Вт) (кроме АМ); 144/430 МГц (20 Вт) (АМ);; Rх: 0,03-200 / 400-470 МГц; LSB, USB, CW, RTTY, AM, FM, (приём WFM); цветной дисплей 2,5 " с изменяем 9 Позвоните, чтобы уточнить цену
90314/15 IC-7000 USA #05 Тх: 1,8 - 50 МГц (100 Вт) (кроме АМ);1,8 - 50 МГц (40 Вт) (АМ); 144-148 МГц (50 Вт) (кроме АМ); 430 МГц (35 Вт) (кроме АМ); 144/430 МГц (20 Вт) (АМ);; Rх: 0,03-200 / 400-470 МГц; LSB, USB, CW, RTTY, AM, FM, (приём WFM); цветной дисплей 2,5 " с изменяем 1 Позвоните, чтобы уточнить цену
111111/3 IC-703 #08 Тх: 1,8 - 30 МГц; Rх: 0,03-60 МГц; 10 Вт (5ВТ при работе от носимого АКБ); USB, LSB, CW, RTTY, AM, FM, 105 каналов памяти, выносная панель управления, встроенный антенный тюнер, без платы UT-106 (DSP)    Позвоните, чтобы уточнить цену
111111/2 IC-703 #12,15 Тх: 1,8 - 30 МГц; 50-54 МГц; Rх: 0,03-60 МГц; 10 Вт (5ВТ при работе от носимого АКБ); USB, LSB, CW, RTTY, AM, FM, 105 каналов памяти, выносная панель управления, встроенный антенный тюнер.    Позвоните, чтобы уточнить цену
190312/76 IC-703 #13,14,18 Тх: 1,8 - 30 МГц; Rх: 0,03-60 МГц; 10 Вт (5ВТ при работе от носимого АКБ); USB, LSB, CW, RTTY, AM, FM, 105 каналов памяти, выносная панель управления, встроенный антенный тюнер.    Позвоните, чтобы уточнить цену
190314/4 IC-706MK2G #05 Тх: 1,8 - 30 МГц; (100 Вт); 50-54 МГц; (100 Вт); 144-148 МГц; (50 Вт); 430-450 МГц; (20 Вт); Rх: 0,03-200 МГц; LSB, USB, CW, RTTY, AM, FM, (приём WFM), 102 канала, выносная панель управления, спектроскоп    Позвоните, чтобы уточнить цену
190314/35 IC-718#02 Тх: 1.8 - 30МГц; (100 Вт); Rх: 0.03 - 30МГц; SSB, LSB, RTTY, CW, AM 100 каналов, отключаемый предусилитель/аттеньюатор, VOX, переменная полоса по ПЧ. КОМПЛЕКТ: микрофон НМ-36, кабель пит 11 Позвоните, чтобы уточнить цену
190314/1 IC-7400 IC-746 PRO#02 Тх: 1,8 - 30 МГц; (100 Вт); 50-54 МГц; (100 Вт); 144-148 МГц; (100 Вт); Rх: 0,03-60 / 108-174 МГц; LSB, USB, CW, RTTY, AM, FM, (приём WFM); 102 канала; спектроскоп, встроенные предусилитель/аттенюатор, автоматический антенный тюнер, цифровой сигнальный 11 Позвоните, чтобы уточнить цену
190314/13 IC-756PRO3#33EU Тх: 1,8 - 30 МГц; 50-54 МГц; Rх: 0,03-60 МГц; LSB, USB, CW, AM, FM, (100 Вт), 100% цикл, 101 канал, улучшенный предусилитель/аттеньюатор и автоматический атенный тюнер, модуль CTCSS, 32-битный цифровой сигнальный процессор (DSP); 3-х скоростная АРУ; 5" д   Позвоните, чтобы уточнить цену
190314/12 IC-7800 #03EU Тх: 1,8 - 30 МГц ; 50-54 МГц (200 Вт), АМ (50 Вт); Rх: 0,03-60 МГц; LSB, USB, CW, RTTY, AM, FM, PSK31, 100% цикл, 101 канал, встроенный автоматический атенный тюнер, 7" цветной дисплей, интерфейс для подключения VGA монитора, встроенный кодер/декодер RT   Позвоните, чтобы уточнить цену
190314/ IC-910 H Tx: 144-146 МГц (100 Вт); 430-440 МГц (75 Вт); 1240-1300 МГц, при наличии UX-910 (10 Вт) SSB, CW, FM КОМПЛЕКТ: микрофон HM -12, 7 Позвоните, чтобы уточнить цену
190313/35 IC-E7 TX: 144-148/430-450 мГц, (Rх: 0,495…999,990 МГц), 144 МГц - 1,5 Вт, 430 МГц - 1,0 Вт, 1000 каналов, CTCSS, з/у и Li-ionаккумулятор в комплекте поставки 1 Позвоните, чтобы уточнить цену
190313/164 IC-E90 50/144/ 430 мГц, 5 Вт (приемник 0,1 - 1300 мГц) встроенный VOX, CTCSS/DCS. Комплект: антенна, литий-ионная батарея 1300 мАч, зарядное устройство. 5 Позвоните, чтобы уточнить цену
190371/01 IC-PW1 #04 Усилитель мощности HF+ 50 мГц; 1000 Вт;   Позвоните, чтобы уточнить цену
190313/161 IC-T3H/IC-V8 Тх: 144-148, Rх: 136-174 мГц, 5,5 Вт; дисплей, 107 каналов, 25 кГц; CTCSS, DTMF, DTSC КОМПЛЕКТ: BP-222 (7,2В/600мАч), BC-147, ВС-146   Позвоните, чтобы уточнить цену
190313/36 IC-T81E #04 50-52/136-174/400-470/1240-1300 мГц, 5 Вт; Rх: 76-107,995 МГц, (WFM); CTCSS, DTMF КОМПЛЕКТ: BP-200 (9,6В/680мАч) , BC-110D   Позвоните, чтобы уточнить цену
190313/49 IC-T8E #06 50-52/136-174/400-470мГц, КОМПЛЕКТ: BP-200 (9,6В/600мАч), BC-110D, короткая антенна FA-SC270A   Позвоните, чтобы уточнить цену
111111/4 IC-V82/IC-U82 136-174/ 420-490 мГц, 7/5 Вт, 200 каналов памяти встроенный CTCSS/DCS, встроенный DTMF encoder.    Позвоните, чтобы уточнить цену
02015/88 MB-62 Монтажный комплект для установки IC-706 в автомобиле   Позвоните, чтобы уточнить цену
0402/44 АН-2В Автомобильная КВ антенна, крепление на бампер, 3.5-54мГц (необходим тюнер)   Позвоните, чтобы уточнить цену
02016/4 АН-4 Автоматический антенный КВ тюнер, 3.5….50мГц, 120Вт (провод 7 м согласуется на 3,5 мГц и выше)   Позвоните, чтобы уточнить цену
02016/1 АТ-180 Автоматический антенный КВ+50мГц тюнер для IC-706, 1.8….30+50 мГц, 100Вт   Позвоните, чтобы уточнить цену
09011/221 ОРС-581 Кабель для подключения к передней панели IC-706, длина 3,5м   Позвоните, чтобы уточнить цену
Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru