Официальный дистрибьютор Barrett Communications (Австралия) в Украине ТОВ “КОНЦЕРН АЛЕКС”
Представляем Вашему вниманию оборудование австралийской фирмы Barrett Communications Pty. Ltd., известной во всем мире как производитель надежного радиооборудования КВ и УКВ диапазона, армейского и гражданского назначения.
Отличительной чертой продукции Barrett является законченность системных решений на основе своих радиостанций. В настоящее время реализованы автоматические системы дистанционного управления трансивером, выхода по КВ-каналу в телефонную сеть, передачи данных, факсимильных сообщений, электронной почты, подключения к сети Интернет, передачи графического изображения, текстов, файлов и т.п.
Barret communications
|
Опции
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BARRETT PRC-2080 Тактическая УКВ радиосистема
BARRETT 2063 КВ-УКВ шлюз
BARRETT PRC-2090 Тактическая КВ радиосистема
BARRETT PRC-2064 Тактический голосовой шлюз
HF Tactical antennas
| Rapid deployment wire dipole antenna - 125 W |
Operates from 2 to 30 MHz - 125 W PEP max. Frequency markers attached to Kevlar radiators. Includes:- - Lanyards wound on reusable spools with throw and securing weights - 10 metres of RG-58AU coaxial cable, with waterproof BNC and UHF coaxial connectors - Carry bag - colour black |
 |
| Rapid deployment broadband dipole antenna - 125 W |
Operates from 2 to 30 MHz without adjustment - 125 W PEP max. Can be deployed as full length broadband dipole or in compact form. Manufactured with Kevlar radiators and UV resistant Dacron cords. Includes:- - Radiators and loads wound on reusable spools - Lanyards wound on reusable spools with throw and securing weights - 10 metres of RG-58AU coaxial cable, with waterproof BNC and UHF coaxial connectors - Carry bag - colour black |
 |
| Rapid deployment mast |
Portable 5m mast kit for tactical broadbands and dipoles - rapid deployment. Includes:- - 7 piece mast - Guys on winders, earth pegs, guy pegs and hammer - Carry bag - colour black |
 |
| Tape whip - 1.5 metre |
| For manpack operation in receive mode (for transmission from 5 to 30 MHz but at limited efficiency). |
 |
| Long wire throw out antenna |
For manpack operation with an adaptor to suit the whip stud on PRC-2090. Includes:- - Winding hub, antenna wire and throw weight - Carry bag - colour black |
 |
| Collapsible whip 3 metres |
| For manpack operation with gooseneck - colour black. |
 |
| Counterpoise earth kit - multi-wire |
Recommended to increase the efficiency of the PRC-2090 operating with whip antennas below 3 MHz when in dry soil or desert areas where normal earth connections are difficult to achieve. Includes:- - Winding hub, wire earth radials and weights - Carry bag - colour black |
 |
| Counterpoise earth kit - single wire |
Recommended to increase the efficiency of the PRC-2090 operating with whip antennas below 3 MHz. Includes:- - Winding hub, wire earth radial and peg - Carry bag - colour black |
 |
| Whip adaptor to suit 2090 |
| Complete whip adaptor to fit 2090 manpack. |
|
| Barrett 2019 MIL-SPEC Automatic tuning HF mobile antenna - NATO green |
Features:- - Frequency range 2 to 30 MHz - Fast tuning - typically less than 2 seconds - Extremely robust technical plastic alloy radome - Two piece MIL-SPEC whip and spring - Immersible to 1 metre for 1 hour - Meets MIL-STD 810G Clause 516.5 for shock, Clause 501.4, 503.4 for temperature Clause 514.5 for vibration, Clause 510.4 for dust |
|
Includes:- - Barrett 2019 antenna - Interface cable 6 m - integral coaxial/control with connectors to suit 2090 vehicle docking station - Fibreglass split whip top section and bottom section - Tapered spring - black - Installation sheet |
 |
| Stainless steel whip |
| Single section stainless steel whip for the Barrett 2019 automatic tuning mobile antenna for NVIS operation. |
|
| NVIS whips extension to suit Barrett 2019 automatic tuning mobile antenna |
| Two whip sections complete with tie down harness to extend the whip on the Barrett 2019 automatic tuning mobile antenna for NVIS operation. The usable frequencies for NVIS communications are between 2 MHz and 15 MHz |
 |
| Internal fit GPS receiver for 2019 antenna |
| GPS receiver fitted inside the 2019 antenna, interfaces to the 2050 transceiver via the RF control cable supplied with 2019 antennas. |
 |
| Adaptor plate to mount 2019 antenna |
| Mount plate for mounting 2019 antenna on existing vehicle mounts with NATO 6 or 3 hole or USA 4 hole patterns. |
 |
| 2018 Mobile magnetic loop HF antenna |
Ideal for NVIS propagation or applications requiring constant coverage for distances of 0-1000km, the loop antenna provides significantly more gain than conventional whip antenna systems. Features:- - Frequency range 3.9 to 12.5 MHz - Fast tuning - typically less than 2 seconds - Meets MIL-STD 810G Clause 516.5 for shock, Clause 501.4, 503.4 for temperature Clause 514.5 for vibration, Clause 510.4 for dust - Packed size 2000 mm x 1300 mm x 200 mm Includes:- - Interface cable - integral coaxial/control and connectors - Operation and installation manual |
 |
| Rapid deployment broadband dipole antenna - 125 W |
Operates from 2 to 30 MHz without adjustment - 125 W PEP max. Can be deployed as full length broadband dipole or in compact form. Manufactured with Kevlar radiators and UV resistant Dacron cords. Includes:- - Radiators and loads wound on reusable spools - Lanyards wound on reusable spools with throw and securing weights - 20 metres of RG-58AU coaxial cable, waterproof C32-21 UHF type connector coaxial - Carry bag - colour black |
 |
| Rapid deployment wire dipole antenna - 125 W PEP |
Operates from 2 to 30 MHz with frequency lables to indicate tuned length. Manufactured with Kevlar radiators and UV resistant Dacron cords. Includes:- - Lanyards wound on reusable spools with throw and securing weights - 20 metres of RG-58AU coaxial cable, waterproof C32-21 UHF type connector coaxial - Carry bag - colour black |
 |
| 912 multi-wire broadband dipole (2 to 30 MHz) - 150 W PEP stainless steel |
Includes:- - 30 metres of RG-58AU coaxial cable with waterproof C32-21 type UHF coaxial connectors.
Note:- Masts supplied separately.
|
 |
| 10 metre lightweight, air transportable aluminium mast - nylon guys |
Suitable for rapid deployment of Barrett 912 broadband antennas or Barrett 915 series wire dipole. With Nylon guys and ground mounting. Packed length 2 metres, suitable for air-freight. Includes:- - Offset bracket and pulleys - Nylon guys, guy anchor pegs, pulleys and halyard - Installation instructions |
 |
| 10 metre lightweight, air transportable aluminium mast - stainless steel guys |
Suitable for rapid deployment of Barrett 912 125 W broadband antennas or Barrett 915 series wire dipoles. With Stainless Steel guys and ground mounting. Packed length 2 metres, suitable for air-freight. Includes:- - Offset bracket and pulleys - Stainless steel guys, guy anchor pegs, pulleys and halyard - Installation instructions |
 |
HF Tactical power options
HF Tactical general options
VHF Tactical antenna options
VHF Tactical general options
| Tactical handset with keypad |
Tactical handset with waterproof Gore-tex® membranes and MIL-SPEC connector, speaker, microphone, Press-To-Talk (PTT) button and backlit control keypad for use with advanced software features such as Selcall, Groupcall, key entry and front panel programming. |
 |
| Tactical handset |
| Tactical handset with MIL-SPEC connector, speaker, microphone and Press-To-Talk (PTT) button. For use when functions available to the operator are to be limited. |
 |
| Lightweight tactical headset (under helmet) |
| 2Lightweight Tactical Headset, suited to under helmet mounting, with MIL-SPEC connector, speaker, microphone on a gooseneck and clip on Press-To-Talk (PTT) button. |
 |
| Interconnecting control cable 2.0m between 50 W VHF amplifier and vehicle docking station |
| Required when 50 W VHF amplifier is mounted remotely from the Vehicle Docking Station. |
|
| Coax cable 2.0m BNC to BNC vehicle docking station to 50 W VHF amplifier |
| Required when 50 W VHF amplifier is mounted remotely from the Vehicle Docking Station. |
|
| PRC-2080 Technical manual - on CD |
| Detailed manual with schematics, circuit theory, fault diagnostics and maintenance procedure. |
|
| Canvas backpack |
| Canvas Backpack to suit the PRC-2080 VHF Tactical Handheld Package or VHF 5 W Tactical Transceiver with standard battery. The lightweight backpack design is suited to back mounting the transceiver (transceiver not included), mounting either a short or long antenna and is olive green in colour. |
 |
| Framed backpack |
| Framed back pack to suit PRC-2081. |
 |
| Rugged external mount speaker |
External mount speaker for the PRC-2082 50 W VHF transceiver when used in a mobile, as a base or within a rebroadcast system. Includes mounting bracket
Note:- Cable part number 2080-10-31 is required to connect the speaker.
|
 |
| VHF Speaker mounting bracket |
| Speaker bracket for mounting the rugged external speaker to the vehicle docking station. |
 |
| Cable speaker to PRC-2082 transceiver |
Cable to connect the rugged external mount speaker to the PRC-2082 50 W VHF amplifier when used in a mobile, as a base or within a rebroadcast system. |
 |
| VHF Handset mounting bracket |
Bracket to mount handset to the PRC-2082 50 W VHF transceiver when used in a mobile, as a base or within a rebroadcast system. |
 |
| Vehicle docking station for docking of PRC-2080 transceiver |
| Vehicle docking station to connect PRC-2080 VHF transceiver to Vehicle/Base amplifier or direct to external VHF antenna. Provides DC supply, Audio/RS-232 and RF connections.
Note:- illustrated here with PRC-2080 docked - not supplied with unit.
|
 |
| 50 W VHF Amplifier |
30 - 88 MHz, provides 50 W power output. For PRC-2080 docked in vehicle docking station. Includes Aux Mic/Data Input connector. |
 |
| Anti-vibration mount |
| For mounting a Vehicle Docking Station into an armoured or other shock-heavy vehicle.
Note: includes transition plate.
|
 |
| Transportation casing |
| High impact polyester transportation casing. |
 |
Плагины Joomla
Что такое Радиосвязь
Радиосвязь, электросвязь посредством радиоволн. Для осуществления Радиосвязи в пункте, из которого ведётся передача сообщений (радиопередача), размещают радиопередающее устройство, содержащее радиопередатчик и передающую антенну, а в пункте, в котором ведётся приём сообщений (радиоприём), - радиоприёмное устройство, содержащее приёмную антенну и радиоприёмник. Генерируемые в передатчике гармонические колебания с несущей частотой, принадлежащей какому-либо диапазону радиочастот (см. Радиоволны), подвергаются модуляции в соответствии с передаваемым сообщением (см. Модуляция колебаний). Модулированные радиочастотные колебания представляют собой радиосигнал. От передатчика радиосигнал поступает в передающую антенну, посредством которой в окружающем антенну пространстве возбуждаются соответственно модулированные электромагнитные волны. Распространяясь, радиоволны достигают приёмной антенны и возбуждают в ней электрические колебания, которые поступают далее в радиоприёмник. Принятый т. о. радиосигнал очень слаб, т.к. в приёмную антенну попадает лишь ничтожная часть излученной энергии (см. Распространение радиоволн). Поэтому радиосигнал в радиоприёмнике поступает в электронный усилитель, после чего он подвергается демодуляции, или детектированию; в результате выделяется сигнал, аналогичный сигналу, которым были модулированы колебания с несущей частотой в радиопередатчике. Далее этот сигнал (обычно дополнительно усиленный) преобразуется при помощи соответствующего воспроизводящего устройства в сообщение, адекватное исходному.
В месте приёма на радиосигнал могут накладываться электромагнитные колебания от посторонних источников радиоизлучений, способные помешать правильному воспроизведению сообщения и называемые поэтому помехами радиоприёму. Неблагоприятное влияние на качество радиосвязи могут оказывать также изменение во времени затухания радиоволн на пути распространения от передающей антенны к приёмной (см. Замирания) и распространение радиоволн одновременно по двум или нескольким траекториям различной протяжённости; в последнем случае электромагнитное поле в месте приёма представляет собой сумму взаимно смещенных во времени радиоволн, интерференция которых также вызывает искажения радиосигнала. Поэтому и эти явления относят к категории помех радиоприёму. Их влияние на приём радиосигналов особенно велико при связи на больших расстояниях. Широкое распространение радиосвязи и использование радиоволн в радиолокации, радионавигации и др. областях техники потребовали обеспечения одновременного функционирования без недопустимых взаимных помех различных систем и средств, использующих радиоволны, - обеспечения их электромагнитной совместимости.
Распространение радиоволн в открытом пространстве делает возможным в принципе приём радиосигналов, передаваемых по линиям радиосвязи, лицами, для которых они не предназначены (радиоперехват, радиоподслушивание); в этом - недостаток радиосвязи по сравнению с электросвязью по кабелям, радиоволноводам и др. закрытым линиям. Тайна телефонных переговоров и телеграфных сообщений, предусматриваемая уставом связи СССР, соответствующими правилами др. стран и международными соглашениями, обеспечивается в необходимых случаях применением автоматических средств засекречивания радиосигналов (кодирование и др.).
Попытки осуществить радиосвязь предпринимал ещё Т. А. Эдисон в 80-е гг. 19 в. (им получен соответствующий патент), до открытия в 1888 электромагнитных волн Г. Герцем;хотя работы Эдисона не имели практического успеха, они способствовали появлению др. работ, направленных на реализацию идеи беспроводной связи. Герцем был создан искровой излучатель электромагнитных волн, который (с последующими различными усовершенствованиями) в течение нескольких десятилетий оставался наиболее распространённым в радиосвязи видом радиопередатчика. Возможность и основные принципы радиосвязи были подробно описаны У. Круксом в 1892, но в то время ещё не предвиделось скорой реализации этих принципов. Развитие радиосвязи началось после того, как в 1895 А. С. Поповым,а годом позже Г. Маркони были созданы чувствительные приёмники, вполне пригодные для осуществления сигнализации без проводов, т. е. для радиосвязи. Первая публичная демонстрация Поповым работы созданной им радиоаппаратуры и беспроводной передачи сигналов с её помощью состоялась 7 мая 1895, что даёт основание считать эту дату фактическим днём появления Радиосвязи.
Приёмник Попова не только оказался пригодным для радиосвязи, но и (с некоторыми дополнительными узлами) был впервые успешно применен им в том же 1895 для автоматической записи грозовых разрядов, чем было положено начало радиометеорологии. В странах Западной Европы и США была развёрнута активная деятельность по использованию радиосвязи в коммерческих целях. Маркони в 1897 зарегистрировал в Англии Компанию беспроводного телеграфирования и сигнализации, в 1899 основал Американскую компанию беспроводной и телеграфной связи, а в 1900 - Международную компанию морской связи. В декабре 1901 им была осуществлена радиотелеграфная передача через Атлантический океан. В 1902 в Германии производство оборудования для радиосвязи организовал А. Слаби (совместно с Г. Арко), а также К. Ф. Браун. Очевидное огромное значение радиосвязи для военных флотов и для морского транспорта, а также гуманистическая роль радиосвязи (при спасании людей с кораблей, потерпевших крушение) стимулировали развитие её во всём мире. На 1-й Международной административной конференции в Берлине в 1906 с участием представителей 29 стран были приняты регламент радиосвязи и международная конвенция, вступившая в силу с 1 июля 1908. В регламенте было зафиксировано распределение радиочастот между разными службами радиосвязи (см. ниже). Было основано Бюро регистрации радиостанций и установлен международный сигнал бедствия SOS. На международной конференции в Лондоне в 1912 было несколько изменено распределение частот, уточнён регламент и учреждены новые службы: радиомаячная, передачи сводок погоды и передачи сигналов точного времени. По решению радиоконференции 1927 было запрещено применение искровых радиопередатчиков, создававших излучение в широком спектре частот и препятствовавших тем самым эффективному использованию радиочастот; искровые передатчики были оставлены только для передачи сигналов бедствия, поскольку широкий спектр излучения радиоволн увеличивает вероятность их приёма. С 1915 до 50-х гг. аппаратура для радиосвязи развивалась главным образом на основе электронных ламп; затем были внедрены транзисторы и др. полупроводниковые приборы.
До 1920 в радиосвязь применялись преимущественно волны длиной от сотен м до десятков км. В 1922 радиолюбителями было открыто свойство декаметровых (коротких) волн распространяться на любые расстояния благодаря преломлению в верхних слоях атмосферы и отражению от них. Вскоре такие волны стали основным средством осуществления дальней радиосвязи Для приёма передаваемых т. о. сигналов, приходящих с больших расстояний, служат чувствительные приёмники и большие, сравнительно остронаправленные антенные сооружения, занимающие большую территорию, т. н. антенное поле (подобные же сооружения используются и для излучения декаметровых волн). Для ослабления радиопомех приёмное оборудование размещается в стороне от городов и вдали от радиопередатчиков, на специальных приёмных радиоцентрах. Радиопередающие устройства также группируются - на передающих радиоцентрах. Те и другие связаны с находящимся в городе центральным телеграфом, откуда поступают передаваемые и куда транслируются принимаемые сигналы.
В 30-е гг. были освоены метровые, а в 40-е - дециметровые и сантиметровые волны, распространяющиеся в основном прямолинейно, не огибая земной поверхности (т. е. в пределах прямой видимости), что ограничивает прямую связь на этих волнах расстоянием в 40-50 км. Поскольку ширина диапазонов частот, соответствующих этим длинам волн, - от 30 Мгц до 30 Ггц - в 1000 раз превышает ширину всех диапазонов частот ниже 30 Мгц (волны длиннее 10 м), то они позволяют передавать огромные потоки информации, осуществляя многоканальную связь. В то же время ограниченная дальность распространения и возможность получения острой направленности с антенной несложной конструкции позволяют использовать одни и те же длины волн во множестве пунктов без взаимных помех. Передача на значительные расстояния достигается применением многократной ретрансляции в линиях радиорелейной связи или с помощью спутников связи, находящихся на большой высоте (около 40 тыс. км) над Землёй (см. Космическая связь). Позволяя вести на больших расстояниях одновременно десятки тысяч телефонных разговоров и передавать десятки телевизионных программ, радиорелейная и спутниковая связь по своим возможностям являются несравненно более эффективными, чем обычная дальняя радиосвязь на декаметровых волнах, значимость которой соответственно уменьшается (за ней, например, остаётся роль полезного резерва, а также роль средства связи на направлениях с малыми потоками информации).
При большой мощности радиопередатчика (десятки квт) радиосвязь на метровых волнах в узкой полосе частот (несколько кгц) возможна на расстояниях ~ 1000 км за счёт рассеяния волн в ионосфере (см. Ионосферная радиосвязь). Пользуются также отражением радиоволн от ионизованных следов метеоров, сгорающих в верхних слоях атмосферы (см. Метеорная радиосвязь), но при этом передача информации идёт с перерывами, что не позволяет осуществлять телефонных переговоры.
Малая часть энергии излучения на дециметровых и сантиметровых волнах может также распространяться за пределы горизонта (на расстояния в сотни км) благодаря электрической неоднородности тропосферы. Это позволяет при сравнительно большой мощности передатчиков (порядка нескольких квт) строить линии радиорелейной связи с расстоянием между промежуточными станциями в 200-300 км и более (при сужении частотного спектра излучения, т. е. уменьшении объёма передаваемой информации, см. Тропосферная радиосвязь).
Линии радиосвязи используются для передачи телефонных сообщений, телеграмм, потоков цифровой информации и факсимиле, а также и для передачи телевизионных программ (обычно на метровых и более коротких волнах). По назначению и дальности действия различают международные и внутрисоюзные общегосударственные линии радиосвязи. Внутрисоюзные линии делятся на магистральные (между столицей СССР и столицами союзных республик, краевыми и областными центрами, а также между последними) и зоновые (внутриобластные и внутрирайонные). Развитие линий радиосвязи планируется с учётом вхождения радиосвязи в Единую автоматизированную систему связи страны.
Организационно-технические мероприятия и средства для установления радиосвязи и обеспечения её систематического функционирования образуют службы радиосвязи, различаемые по назначению, дальности действия, структуре и др. признакам. В частности, существуют службы: наземной и космической радиосвязи (к космической радиосвязи относят все виды радиосвязи с использованием одного или нескольких спутников или иных космических объектов); фиксированной (между определёнными пунктами) и подвижной (между подвижной и стационарной радиостанциями или между подвижными радиостанциями); радиовещания и телевидения. Для производственных и специальных служебных надобностей имеются ведомственные службы радиосвязи в некоторых министерствах и организациях (например, в гражданской авиации, на ж.-д., морском и речном транспорте, в службах пожарной охраны, милиции, медицинской службе городов), а также внутрипроизводственная связь на промышленных и с.-х. предприятиях, в некоторых учреждениях и т.д. (см. также Радиостанция низовой связи). Большое значение имеет радиосвязь в вооружённых силах.
Информация взята из сайта http://www.raciiru.ru/history/