Цены и наличие товара Вы можете уточнить здесь

Alcom Al-446 PRO

Выходная мощность 4 Вт
дальность связи до 6 км
16 каналов памяти
38 CTCSS / 83 DCS кодов сигналинга
аккумулятор 1100 мАЧ
тайм-аут таймер
сканирование каналов с функцией приоритетного канала
компактные размеры и элегантный дизайн

световая индикация состояния аккумуляторной батареи

 

Характеристики AL - 446 PRO
Частотный диапазон 430-450 МГц
Тип излучения 16K0F3E, 8K50F3E
Количество каналов 16
Питание 6,0 В (минус на землю)
Антенное сопротивление 50 Ом
Входное сопротивление микрофона 2,2 кОм
Выходное сопротивление (аудио) 8 Ом
Температурный диапазон -30...+60 С°
Габаритные размеры 54,2 х 108 х 37,4 мм
Вес 273 г (с АNВ-75)
Передатчик
Выходная мощность 4 Вт
Система модуляции ЧМ
Максимальная девиация частоты +/- 5 кГц (при шаге 25 кГц),
+/- 2,5 кГц (при шаге 12,5 кГц)
Коннектор внешнего микрофона 3-контактный, 2,5 мм, 2 кОм
Стабильность частоты +/- 5 ppm
Паразитные излучения - 70 Dbm
Потребляемый ток до 1,6 А
Приёмник
Система модуляции Супергетеродин с двойным преобразованием частоты
Чувствительность приёмника 0,25 мкВ при 12 дБ SINAD (-119 dBm)
Выход аудио при 6,0 В 0,5 Вт при 5% искажения при 8 Ом
Уровень пиёма паразитных излучений 60 дБ
Канальная избирательность 65 дБ
Блокирование 85 дБ
Интермодуляционная избирательность 60 дБ
Потребляемый ток (режим приёма) 250 мА
К вопросу об истории радиосвязи
Если разобраться глубже, то радиосвязь (принято ее называть обобщенным словом "радио") началась не с А. Попова и Г. Маркони. Как и многие другие успехи в электричестве и магнетизме, она базируется на изобретениях и открытиях английского физика Майкла Фарадея (1791-1867) и работах выдающегося английского математика и физика Джеймса Клерка Максвелла (1831-1879).

Среди многих открытий Фарадея было разъяснение им в 1831 г. принципа электромагнитной индукции. Обладая даром предвидения, он писал в 1832 г.: "Я полагаю, что распространение магнитных сил от магнитного полюса, волн на поверхности возмущенной воды и звука в воздухе имеют родственную основу. Иными словами, я считаю, что теория колебаний будет применима к этому явлению, равно как и к звуку и, весьма вероятно, к свету".

Максвелл был согласен с этим утверждением. Однако наука развивалась медленно, и лишь в 1855 г. он опубликовал статью "О силовых линиях Фарадея", а в 1864 г. дал миру свою ошеломляющую работу "Динамическая теория электромагнитного поля".

Эта статья содержала то, что мы сейчас называем уравнениями Максвелла. Она объясняла все известные явления электромагнетизма, а также предсказывала существование радиоволн и возможность их распространения со скоростью света.

22 ноября 1875 г. американский изобретатель и предприниматель Томас Алва Эдисон (1847-1931) наблюдал, как после возникновения сильной искры между полюсами индуктора в рассыпанных на столе угольных зернах проскакивали искры, он записал тогда в свой дневник о наблюдении "эфирной силы". Hо потом как-то забыл об этом. По крайней мере до 1883 г.

В 1887 г. теоретические выводы Максвелла были экспериментально подтверждены немецким физиком Генрихом Рудольфом Герцем (Херцем) (1857-1894). Используя искровой передатчик и рамочную антенну с небольшим зазором (вибратор Герца) в качестве приемника, он передавал и принимал радиоволны в своей лаборатории в Карлсруэ. Более того, он применил отражательное устройство для обнаружения стоячих волн и показал, что радиоволны подчиняются всем законам геометрической оптики, включая рефракцию и поляризацию. Впервые дал описание внешнего фотоэффекта, разрабатывал теорию резонансного контура, изучал свойства катодных лучей и влияние ультрафиолетовых лучей на электрический разряд.

Пионером самой идеи радиосвязи по праву можно считать и болгарского ученого Петра Атанасова (Хаджиберовича) Берона (1800-1871), который в приложении к III тому (с. 906-944) семитомной "Панепистемии" (панепистемия - всенаука, т. е. единая наука существующего мира; французское издание периода 1861-1870 гг. хранится в Национальной библиотеке св. Кирилла и Мефодия в Софии) приводит свой проект беспроволочной передачи сообщений как по суше, так и по воде. Проект содержал многие технические чертежи будущего беспроволочного телеграфа.

Строго говоря, практическая эра радиосвязи берет свой отсчет с 1883 г., когда Эдисон открыл названный его именем эффект, пытаясь продлить срок службы созданной им ранее лампы с угольной нитью введением в ее вакуумный баллон металлического электрода. При этом он обнаружил, что если приложить к электроду положительное напряжение, то в вакууме между этим электродом и нитью протекает ток. Это явление, которое, к слову сказать, было единственным фундаментальным научным открытием великого изобретателя, лежит в основе всех электронных ламп и всей электроники дотранзисторного периода. Им были опубликованы материалы по так называемому эффекту Эдисона и был получен соответствующий патент. Однако Эдисон не довел свое открытие до конечных результатов.

Некоторые критики первой половины XX-го столетия выдавали данный факт за доказательство того, что он был просто настойчивым ремесленником, а не великим ученым. Защищая же Эдисона, историки отмечали, что в то время он был всецело занят многими другими изобретениями и организацией всевозможных производств в области электрорадиотехники: в 1882 г. при его участии была пущена первая электростанция на ул. Пирл-Стрит в Нью-Йорке, и в 1883 г. Эдисон был поглощен многими финансовыми, организационными и техническими проблемами. В последующие годы он создал множество приборов и устройств (в том числе мощные электогенераторы, фонограф, прототип диктофона, железо-никилиевый аккумулятор и др.)