Цены и наличие товара Вы можете уточнить здесь

Alcom ADR-3128 >>
CENIX VR-402 >>
CENIX VR-880 >>
CENIX VR-P20 >>
CENIX VR-P200 (с фотокамерой на 250 кадров) >>
CENIX VR-P400 (с фотокамерой на 250 кадров) >>
CENIX VR-P50 >>
CENIX VR-P630 >>
CENIX VR-P800 (с фотокамерой на 250 кадров) >>
CENIX VR-P90 >>
DIASONIC DDR-1016 >>
SAFA IRC 220 >>
SAFA IRS 1000 >>
SAFA IRS 2000 >>
SAMSUNG P700 >>


Alcom

ADR-3128


adr_3128

  • Высококачественное воспроизведение МРЗ и WMA файлов
  • Многофункциональный ЖКД с синей подсветкой
  • USB 1.1 интерфейс
  • Беспроводный выносной радиомикрофон позволяет вести запись, находясь с диктофоном на расстоянии от источника звука
  • 5 типов эквалайзера (Нормальное звучание, Рок, Поп, Классика и Живое звучание)
  • Система автоматической записи ARS-2
    режим А: запись происходит в один файл, не записывая пауз
    режим В: паузы также не записываются, но при автоматическом включении после паузы записьпроизводится в новый файл
  • Функция REALTIME STOP позволяет вернуться к сохраненному месту в записи и начать прослушивание с того места, на котором оно было закончено в прошлый раз
  • 396 сообщений в памяти и 4 файла (99 сообщений в каждом файле)
  • Функция будильника, воспроизведения и записи по таймеру: может быть установлен звук или сообщение, которое будет проигрываться автоматически в заданное время, чтобы предупредить вас о событии, дать информацию, может принимать и записывать трансляции, разговоры автоматически ежедневно, еженедельно, ежемесячно
  • Питание выключается автоматически после 1 минуты без заданий
  • Удобный поиск нужных сообщений
  • Управление скоростью воспроизведения (медленная/нормальная/быстрая)
  • Позволяет прослушивать сообщения в наушниках во время записи

     

     

     

    Время записи
      Режим Супер высококачественной записи,мин Режим высококачественной записи,мин Режим нормальной записи,мин
    32MB 280 540 650
    64MB 580 1070 1330
    128MB 1180 2160 2710
    256MB 2350 4300 5400
    Спецификации
    FM приемник 87,5-108 МГц
    выходная мощность макс 80мВт (громкоговоритель 8Ом) мин 50мВт (наушники 16Ом)
    частотная характеристика 20Гц-2ОкГц (МРЗ) З00Гц-4кГц (диктофон)
    питание AAA (LR03)x 2EA, 16 часов работы; гнездо DC подзарядки ЗВ 200мА
    объем памяти 32МБ, 64МБ, 128МБ и 256МБ
    интерфейс ПК центральный процессор не менее 200МГц, виртуальный диск не менее 64МБ, 20МБ свободного места, ОС Windows 98SE, МЕ, 2000, ХР

    CENIX

    VR-402


    VR-402 Время записи (мин): SP - 118
    LP - 238
    Количество записей: 199
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Есть
    Габариты: 25 х 125 х 15,5 мм
    Вес без батарей: 33 гр.


    VR-880


    VR-880 Время записи (мин): SP - 232
    LP - 504
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 26 х 17 х 123,5 мм
    Вес без батарей: 38 гр.


    VR-P20


    VR-P20 Время записи (мин): SP - 130
    HQ - 30
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 х 104 х 17 мм
    Вес без батарей: 38 гр.


    VR-P200 (с фотокамерой на 250 кадров)


    VR-P200 Время записи (мин): HQ - 30
    SP - 130
    Количество записей: 2 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.


    VR-P400 (с фотокамерой на 250 кадров)


    VR-P400 Время записи (мин): HQ - 65
    SP - 270
    Количество записей: 2 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.


    VR-P50


    VR-P50 Время записи (мин): SP - 270
    HQ - 65
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 х 104 х 17 мм
    Вес без батарей: 38 гр.


    VR-P630


    VR-P630 Время записи (мин): SP - 400
    LP - 400
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 42,5 x 13,7 х 99,8 мм
    Вес без батарей: 38гр.


    VR-P800 (с фотокамерой на 250 кадров)


    VR-P800 Время записи (мин): HQ - 134
    SP - 548
    Количество записей: 2 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.


    VR-P90


    VR-P90 Время записи (мин): SP - 548
    HQ - 134
    Количество записей: 4 банка по 100
    Диапазон записываемых частот: 500 Hz - 3 500 Hz
    Порт для перезаписи на ПК: Есть
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 29 x 104 х 17 мм
    Вес без батарей: 38гр.



    DIASONIC

    DDR-1016


    DDR-1016 Время записи (мин): SP - 258
    LP - 562
    Количество записей: 4 банка по99
    Диапазон записываемых частот: 500 Hz - 3200 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Есть
    Габариты: 25 x 125 х 15,5 мм
    Вес без батарей: 33 гр.


    SAFA

    IRC 220


    SAFA IRC 220 Время записи (мин): HQ - 70
    SP - 140
    Количество записей: 207
    Диапазон записываемых частот: HQ 300 Hz - 8000 Hz
    SP 300 Hz - 3500 Hz
    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Есть
    Габариты: 100 x 45 х 13 мм
    Вес без батарей: 45 гр.


    IRS 1000


    SAFA IRS 1000 Время записи (мин): 570
    Количество записей: 199
    Диапазон записываемых частот:

    300 Hz -3500 Hz

    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 31 x 116 х 14 мм
    Вес без батарей: 36 гр.


    IRS 2000


    SAFA IRS 2000 Время записи (мин): 1160
    Количество записей: 199
    Диапазон записываемых частот:

    300 Hz -3500 Hz

    Порт для перезаписи на ПК: Нет
    Управление записью голосом: Есть
    Адаптер для записи с тел. линии: Есть
    Габариты: 31 x 116 х 14 мм
    Вес без батарей: 36 гр.


    SAMSUNG

    Samsung P700


    Samsung P700 Время записи (мин): SP - 35
    LP - 70
    Количество записей: 99
    Диапазон записываемых частот: 500 Hz - 4000 Hz
    Порт для перезаписи на ПК: Неть
    Управление записью голосом: Нет
    Адаптер для записи с тел. линии: Нет
    Габариты: 18 x 148 мм
    Вес без батарей: 31 гр.
Как и куда распространяются радиоволны
Чем длиннее, тем дальше

Каждый раз, когда вы беретесь за ручку настройки радиоприемника и отправляетесь в путешествие по эфиру, перед вами открывается удивительный мир странствий, интересных и совсем не опасных приключений. Единственным их результатом будет расширение ваших знаний и кругозора.

Для обычного путешествия, как известно, нужны карта, компас (а лучше, спутниковый карманный приемник-навигатор - такие уже имеются), еще немного туристического снаряжения и элементарные знания и навыки. Для путешествия по эфиру, не выходя из дома, нужно все то же самое: снаряжение - радиоприемник, карта и "компас", справочник по радиостанциям мира и, конечно, знания и навыки. Как раз то, о чем мы сегодня собираемся поговорить.

Бесполезно искать ночью иголку в стоге сена, как бесполезно днем, находясь на территории России, искать в эфире американские радиостанции на средних волнах, хотя найти их можно ночью и днем. Итак, все наше многословие свелось к одному: вращая ручку настройки приемника, полезно хотя бы немного знать о распространении радиоволн на Земле.

Последней фразой я хотел подчеркнуть, что в Космосе все гораздо проще. Радиоволны, как и световые, и другие электромагнитные волны, распространяются прямолинейно. Они стараются это делать и на Земле, но она-то, как справедливо заметили еще средневековые ученые, круглая, и дальше горизонта на ней ничего не видно! Какой же смелостью надо было обладать Колумбу, а затем и Магеллану, чтобы экспериментально, собственным путешествием доказать сферичность Земли!

Трудно сравнивать, но изрядной смелостью обладал и Маркони, когда не прошло и десятилетия после первых успешных опытов Генриха Герца, Оливера Лоджа и Александра Попова по передаче и приему радиоволн, а он уже поставил целью послать радиосигналы через Атлантический океан. Были натянуты гигантские по тем временам проволочные антенны, построены мощные передатчики. И такая связь между побережьями Англии и Канады была впервые осуществлена в 1903 г. Успех был огромен, хотя всего-то и принято было достоверно три телеграфных тире.

В те годы уже было экспериментально, т. е. методом проб и ошибок, установлено, что чем длиннее волна, тем дальше она распространяется. Первую трансатлантическую связь провели на сверхдлинных волнах. Отсюда и применение гигантских антенн - ведь длина волны первых примитивных радиопередатчиков прямо зависела от длины антенны. Кроме того, чтобы антенна эффективно излучала, ее длина должна быть хотя бы порядка четверти длины волны. Тогда же необходимо было объяснить факт зависимости дальности распространения от длины волны явлением дифракции. Упрощенно говоря, дифракция - это огибание волной препятствия, а препятствием является высота шарового сегмента Земли, разделяющего приемную и передающую радиостанции (рис. 16). От Санкт-Петербурга до Москвы, как известно, около 600 км. Расчет дает высоту шарового сегмента h около семи километров, следовательно, длинные, километровые волны распространяются на такие расстояния.


У читателя может возникнуть вопрос: а как определить длину волны? Прежде ее обозначали в метрах прямо на шкале приемника, а теперь все чаще в килогерцах и мегагерцах (соответствующих длине волны), а уж современные цифровые шкалы и подавно измеряют только частоту. Длина волны l и частота колебаний f радиопередатчика обратно пропорциональны и связаны через скорость распространения радиоволн - c, такую же, как и скорость света: l= c/f. Практически, чтобы узнать длину волны в километрах, надо 300 разделить на частоту в килогерцах. Например, московская длинноволновая радиостанция на частоте 171 кГц (бывшая имени Коминтерна) имеет длину волны около 1,75 км. Ее можно слушать почти на всей территории европейской части России круглосуточно. Увлечение длинными волнами на заре радиотехники породило великую эпоху Радиостроя, когда антенны становились все выше, а радиостанции все мощнее. В 30-е годы радиостанция им. Коминтерна была самой мощной в Европе, излучая до 500 кВт, и ее слушали на детекторные приемники в самых глухих и отдаленных деревнях.

Радиостанций становилось все больше, и они стали создавать помехи друг другу. Здесь надо заметить, что при передаче радиовещательной программы станция занимает в эфире не одну частоту, а целую полосу частот шириной до 20 кГц. В справочниках указывают центральную частоту этой полосы, называемую несущей частотой, или просто несущей. Именно эту частоту и генерирует высокочастотный, или, как его называют, задающий генератор передатчика. Затем его колебания усиливаются и модулируются колебаниями звуковых частот.

В 30-е годы было достигнуто соглашение - установить разнос частот радиостанций в 9 кГц. Оно соблюдается и поныне. Теперь легко сосчитать, что на длинных волнах, в участке, отведенном для радиовещания (примерно от 150 до 400 кГц), можно разместить не более двух с половиной десятков радиостанций.

Со временем стали строить средневолновые радиостанции - в этом диапазоне около 120 частотных каналов, но и дальность распространения меньше, поскольку длина волны короче ( вспомните про дифракцию). Поэтому один и тот же частотный канал стали отводить нескольким, достаточно удаленным друг от друга радиостанциям. В дневное время они не создавали помех друг другу. Иное дело ночью, дальность распространения длинных и средних волн намного возрастала и становились слышны радиостанции, удаленные на несколько тысяч километров. Резко возрастали и взаимные помехи. Отчего это?

Ученые уже имели рабочую гипотезу. Высказал ее Оливер Хевисайд, чудаковатый английский джентльмен, чопорный и безукоризнено одетый, когда появлялся на людях. Но делать он этого не любил, а любил работать по ночам в жарко натопленной комнате и с наглухо занавешенными окнами. Говорят, что когда его избрали действительным членом Королевского Общества (по-нашему - Академии наук) и пригласили на торжественную церемонию избрания (черные мантии, головные уборы с четырехугольным верхом), он не нашел гинеи (а такой символический взнос надо было уплатить) и просто не пошел на заседание! К чести общества надо сказать, что оно все-таки избрало Хевисайда не действительным, но почетным членом, при этом не требовалось ни его присутствия, ни гинеи.

Так в чем же состояла гипотеза?

3.2. Жизнь преподносит сюрпризы!

Пока шла драка за распределение частот на длинных и средних волнах, короткими никто не интересовался, они считались просто непригодными для дальней радиосвязи и за ненадобностью были отданы... радиолюбителям. А такие уже были в начале двадцатых годов. Ведь и радиосвязь, и наблюдение за сигналами радиостанций - это очень интересно! И вот, от радиолюбителей стали поступать сенсационные сообщения: с помощью простейших передатчиков мощностью в несколько ватт и примитивных приемников устанавливались связи на десятки тысяч километров! Такой феномен уже нельзя объяснить дифракцией.

Тут-то и вспомнили гипотезу Хевисайда: верхние слои атмосферы должны быть ионизированы солнечным излучением. Ионизированный газ (ионосфера) содержит много свободных электронов и может проводить электрический ток, а значит, должен отражать радиоволны. Скорые на подъем американцы соорудили импульсный передатчик, и в 1924 г. инженеры Брейт и Тьюв получили отражение от ионосферы при вертикальном зондировании и измерили время запаздывания отраженного импульса, а по нему вычислили высоту отражающего слоя.

Ионосферу долгое время называли слоем Хевисайда. Позднее Эпплтон, анализируя отраженные сигналы, обнаружил, что отражающих слоев несколько. Ему же мы обязаны и названиями слоев. В своих расчетах он обозначил вектор напряженности электрического поля, как это обычно и делается, буквой Е. Когда же понадобилось обозначить поле другого отражения, он выбрал следующую букву алфавита - F. Убедившись, что отражения идут от разных слоев, он решил, что и названия им готовы - Е и F, при этом имея в виду, что в дальнейшем могут быть открыты и другие слои, для которых пригодятся и предыдущие, и последующие буквы алфавита. Это предвидение вполне оправдалось. Теперь известно, что в летний полдень можно наблюдать, по крайней мере, четыре четко различимых слоя. Самый нижний, слой D на высоте около 70 км, существует только днем. Слой E на высоте 90...120 км существует круглосуточно, лишь ночью в нем уменьшается электронная концентрация (Солнце-то, причина ионизации, не светит!) и увеличивается высота. То же, но в меньшей степени, происходит и со слоем F, но он расположен значительно выше - 200...250 км. Днем он распадается на два слоя - F1 и F2.

Информация взята из сайта http://www.chipinfo.ru