ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ
RC-FS10 (Remote communicator)
RS-MGR1 (System Manager)

Цены и наличие товара Вы можете уточнить здесь

 

RC-FS10 (Remote communicator)

RC-FS10

 

 

 

 

Описание

Virtual Radio/Dispatch Software for an IDAS™ NXDN™
Multi-Site Trunking & Conventional System

The RC-FS10 Remote Communicator creates a virtual radio/simple dispatcher on a Windows®-based PC. It allows you to remote access IDAS NXDN repeaters via an IP network and communicate with IDAS NXDN radio terminals even from outside of the radio coverage area.

The RC-FS10 can be used not only for an IDAS NXDN trunking system, but also an IDAS NXDN conventional system*.

* To use the RC-FS10 in an IDAS trunking system, either the UC-FR5000 #03 (for trunking system) or the UC-FR5000 #02 (for conventional system) is required to be installed in the IC-FR5000/FR6000 repeater.

software image

Multi-site system

Характеристики

Системные рекомендации

Операционная система Windows® XP SP3 или позднее (32-bit)
Windows Vista® SP2 или позднее (32-bit/64-bit),
Windows® 7 (32-bit/64-bit)
CPU Intel® Pentium® 4 1.6ГГц CPU или лучше
Memory 512MB или больше (для Windows® XP)
1GB или большеr (для Windows Vista® и Windows® 7)
Дисковое пространство 100MB свободного места на диске
Аудио DirectSound совместимое аудио
(Частота отклика до 20кГц, частота дискретизации 48кГц)
Разрешение экрана 1024x768пикселей или более
Прочее CD-ROM, USB 2.0 порт,
10Mbps или быстрее сетевой интерфейс,
спикер, микрофон и наушники


Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.
Icom, Icom Inc. и логотип Icom являются зарегистрированными торговыми марками Icom Incorporated (Япония) в Соединенных Штатах, Великобритании, Германии, Франции, Испании, России, Японии и / или других странах. IDAS является торговой маркой Icom Incorporated. Microsoft Windows и Windows Vista являются зарегистрированными товарными знаками или товарными знаками корпорации Microsoft в США и / или других странах. Intel и Pentium являются товарными знаками корпорации Intel в США и других странах.


Опции

Схема подключения

Connection Diagram

PTT Адаптер микрофона

CT-23

CT-23

     

AC Адаптер

BC-147

BC-147SA/SE

12В/200мА
     

Микрофон

HM-152

HM-152

     

Настольный микрофон

SM-26

SM-26

 

   

RS-MGR1 (System Manager)

RS-MGR1

 

 

Описание

Remote System Manager Software
for IDAS™ NXDN™ Multi-Site Trunking System

network image

The RS-MGR1 system manager software allows you to obtain air time information, network connectivity/statistics and hardware status of the IDAS multi-site trunking repeater sites using syslog messages. The RS-MGR1 stores received syslog messages and reports and analyzes them to assist in system administration and troubleshooting.

Features

  • Repeater properties show condition summary, system information, interface (traffic statistics), repeater condition details (TX/RX PLL unlock, power supply voltage, internal temperature and fan status) and ping status of each repeater
  • Registration log, communication log, traffic log and search log can be filtered by date, user ID, call type and site code*
  • E-mail alert notification can be sent to the administrator, if an alarm or disconnect occurs or clears
  • The “Mesh ping status” shows the connectivity by sending ping commands in all combinations of repeater sites
  • The “Version list” shows the repeaters firmware revision listThe “Map window” shows repeater site icons laid out on a image file such as a map or network diagram
  • USB flash drive containing the software and for the hardware key protection
  • SR-VPN1 VPN router can be monitored on the RS-MGR1 by syslog

* Filter items differ from log types


software image


Характеристики

Системные рекомендации

Операционная система Windows Vista® SP2 или позднее
Windows® 7 SP1 или позднее,
Windows® 8 (Except Windows RT),
Windows Server® 2003 SP2 или позднее,
Windows Server® 2008 SP2 или позднее,
Windows Server® 2008 R2 SP1 или позднее,
Windows Server® 2012
Память 2GB или больше
Дисковое пространство 500GB минимум места на диске
20MB × Количество ретрансляторов × дней хранения журналов+ 100GB рекомендуется
Разрешение экрана 1280×1024 пикселей или более
LAN 100Mbps или быстрее(Требуется статический IP)
Other USB 2.0 порт, звуковая карта и динамик UC-FR5000 MCU версияя 4.00 или позднее

As of April, 2013.

Все указанные технические характеристики могут быть изменены без предварительного уведомления или обязательств.
Icom, Icom Inc. и логотип Icom являются зарегистрированными торговыми марками Icom Incorporated (Япония) в Соединенных Штатах, Великобритании, Германии, Франции, Испании, России, Японии и / или других странах. IDAS является торговой маркой Icom Incorporated. Microsoft Windows и Windows Vista являются зарегистрированными товарными знаками или товарными знаками корпорации Microsoft в США и / или других странах. Intel и Pentium являются товарными знаками корпорации Intel в США и других странах.

 

Молчание - золото
Развитие сотовой связи привело к резкому росту цен на частотный ресурс. Инженерами было придумано множество различных способов формирования и модуляции сигналов — переноса их в область высоких частот, где и осуществляется радиопередача. Все эти способы, в сущности, создавались для более экономного использования спектра. Но так как законы излучения, распространения и приема радиосигналов везде одинаковые, то естественно было бы ожидать однотипных методов формирования и разделения сигналов. Однако в действительности картина очень пестрая. В чем же дело? Почему не выработан оптимальный вариант использования спектра? И вообще, какой метод — оптимальный? Задать эти вопросы легче, чем ответить на них …
Сравнивать эффективность «чистых» методов (TDMA, FDMA, CDMA…) по большому счету не имеет смысла, она отличается на проценты или десятки процентов, но не в разы. Тем не менее, обычно говорят, что CDMA «значительно эффективнее» TDMA, который, в свою очередь, «обыгрывает» FDMA…
Дело тут в том, что «оптимальности» и «эффективности» не бывает самой по себе. Наилучший способ использования спектра и наиболее подходящий вид модуляции зависят от условий, в которых работает радиосистема: от объема информации и возможности ее сжатия, от необходимости передавать данные в реальном режиме времени (как, например, речь или видеоконференции), от числа получателей (персональная связь типа «точка–точка» или «точка–много точек»), длины радиоканала, используемого в системе диапазона частот, ограничений на сложность и энергопотребление мобильного оборудования…
Для передачи информации требуется затратить некоторую энергию, причем даже после всех ухищрений (сжатия, модуляции и т. п.) она не может быть сведена к нулю. При передаче эта энергия неизбежно займет некоторую конечную полосу частот — S кГц. И не меньше. А это значит, что в заданном диапазоне частот можно разместить конечное количество каналов. Печально, но факт.
Обратимся к теории.
Первым в радиосвязи было использовано частотное разделение выделенной полосы на множество канальных полос, расположенных с некоторым частотным сдвигом (FDMA). При аналоговой передаче сигнала речи с помощью частотной модуляции это был единственно возможный метод. В первых сетях радиосвязи использовался шаг 50 кГц, а затем долгие годы преобладал шаг 25 кГц. В новых цифровых сетях, когда используется сжатие речевого сигнала и четырехпозиционная частотно-фазовая модуляция плюс помехоустойчивое кодирование (защита данных от ошибок канала передачи), можно уменьшить шаг до 12,5 кГц (уже реализовано на практике, например, в системе радиосвязи АРСО-25) и ожидается переход к 6,25 кГц.
Таким образом, сам факт перехода к цифре позволил снизить скорость передачи сигнала речи и задействовать более эффективные методы кодирования. Дальнейшее снижение шага сетки в рамках FDMA при передаче речи, по-видимому, нереально из-за больших потерь спектра при расфильтровке и нестабильности генераторов опорных частот терминальных устройств (порядка ±1–2 кГц).
В радиосетях с большой загрузкой приходится переходить к так называемой транковой радиосвязи, когда все доступные каналы распределяются среди активных абонентов как коллективный ресурс, что повышает эффективность использования частотного ресурса. А вот переход к частотно-сберегающим методам многопозиционной амплитудно-фазовой модуляции в системах на основе FDMA маловероятен из-за усложнения приемника и необходимости использования слишком длинного кода помехоустойчивого кодирования. Длинный код приводит к недопустимо большим временным задержкам передачи, что препятствует его применению в системах реального времени, какими являются сотовые сети. Поэтому системы с FDMA, по-видимому, сохранятся в малозагруженных сетях радиосвязи, а в сотовых применения не найдут (точнее, уже не нашли).
В системах с временным разделением каналов (TDMA) потери на разделение каналов значительно меньше, но в общей полосе частот, выделенной для радиосети, применить этот метод не удается. Например, в сотовой сети GSM используют комбинированное (FDMA+TDMA) разделение каналов. Сначала общую полосу 25 МГц делят на групповые каналы по 200 кГц методом FDMA, а уже затем групповой канал делят методом TDMA на восемь пользовательских каналов, затрачивая, таким образом, 25 кГц на один канал. В другой системе с похожим комбинированным разделением (американский стандарт IS-54) затраты на полосу значительно ниже — примерно в три раза. Можно ожидать, что благодаря совершенствованию помехоустойчивых кодов, обрабатывающих все более длинные отрезки сигнала, затраты полосы удастся снизить до 3–5 кГц на один канал, но в любом случае это может быть достигнуто только ценой существенного усложнения приемника. Эффективность таких систем всегда будет выше, чем при чистом FDMA, так как для него очень длинные коды непригодны в принципе (из-за большой задержки речи, см. выше). В комбинированных системах FDMA+TDMA временная задержка снижается пропорционально числу задействованных каналов TDMA, что позволяет использовать помехоустойчивое кодирование, обеспечивающее меньшие вероятности ошибки при передаче.
По-видимому, комбинированные системы разделения каналов будут по-прежнему широко использоваться в сотовых сетях со средней загрузкой.
В системах с кодовым разделением каналов (CDMA) возможно использование разных типов так называемых широкополосных сигналов. Самыми известными являются системы ШПС с кодовой модуляцией одной несущей (КМН) и системы с прыгающей частотой (Frequency Hopping — FH). В этих системах каждый канал занимает всю выделенную полосу частот и поэтому создает помеху для всех остальных. Хотя в таких условиях общая потенциальная пропускная способность радиосети снижается, реальная эффективность систем CDMA оказывается даже выше, чем у TDMA. Дело в том, что здесь меньше спектральные потери на разделение каналов. Это достигается благодаря возможности использовать специальные эффективные методы — снова оно! — помехоустойчивого кодирования, сильно ослабляющего влияние помех. При этом попутно осуществляется динамическое перераспределение общего ресурса полосы между активными пользователями (меньше паразитные «простои» спектра). Хотя системы с FH потенциально более эффективны, чем КМН, в сотовой радиосвязи используют именно последние (сети CDMA). Поэтому вывод можно сделать такой: несмотря на сложность приемника CDMA можно надеяться, что будущее — именно за этими системами. Особенно в сетях с большой загрузкой, так как в этом случае CDMA дает самую низкую стоимость минуты разговора и, что даже важнее, наиболее эффективно используется частотный ресурс.
А что будет, если на стотысячном стадионе (например, во время олимпийских соревнований) все сто тысяч зрителей захотят одновременно поговорить по своим мобильным телефонам? Лично сообщив родным и близким об увиденном мировом рекорде или забитом голе? Правильно! Произойдет «завал» сотовой сети из-за перегрузки каналов, и подавляющее большинство абонентов получит отказ от обслуживания подобно тому, как «умирают» сайты, подвергнувшиеся хакерским атакам соответствующего типа.
Придется нам вернуться к ранее сделанному выводу: в заданном диапазоне частот можно разместить конечное число каналов. Это означает, что в перспективе, когда используемые ныне частотные ресурсы окажутся исчерпанными, придется забираться все выше и выше по частотной лестнице… Но тут всплывает другое ограничение: на коротких волнах (более высокие частоты) электромагнитная энергия распространяется прямолинейно (подобно свету), отражается от преград и затухает в средах, отличных от чистого сухого воздуха (например, во время дождя или при повышенной влажности). И еще один нюанс. Пока очень мало известно о воздействии сверхвысоких частот на организм человека. Ясно только, что оно есть.
Поэтому современные тенденции по расширению полос для мобильников третьего поколения (в перспективе — доступ в Интернет, ныне — увлечение WAP и GPRS) вызывают тревогу… Можно с большой уверенностью сказать, что лет через пять все доступные из технических и физиологических соображений диапазоны частот будут заполнены (истощение природного ресурса). Вполне возможно, что произойдет это чуть раньше или чуть позже (пусть даже много позже), но перспектива истощения ресурса никуда не денется.
Что за этим последует? Решение в лоб — создание сверхмалых сот (огромное число базовых станций) и залезания в сверхкороткие частоты. Альтернатива — умерить свои аппетиты в мобильной связи…
И что из того, что чуть ли не 90% финнов имеют сотовые телефоны? Финнов вместе взятых меньше, чем жителей Москвы. Поэтому им можно. И потом они молчаливы по своей натуре. Одновременно разговаривать не любят, да и живут не так скученно.

Информация взята из сайта http://offline.computerra.ru